1,077 research outputs found

    J Psi Measurement in Au+Au Collisions at sqrt (sNN) = 39 and 62.4 GeV

    Get PDF
    J/psi production is considered a very important probes for studying the properties of quark-gluon plasma (QGP). At the PHENIX experiment at Brookhaven National Laboratory, a large suppression of J/psi production in Au+Au collisions at 200 GeV center of mass energy as compared to the binary collision scaled p+p collisions was observed. The level of suppression is similar to that observed at other energies at CERN\u27s SPS and LHC experiments. This work addresses the PHENIX J/psi measurements at sqrt{s_{NN}}= 39 and 62 GeV Au+Au collisions. These allow for the energy dependent J/psi suppression measurements in order to disentangle the important contributing factors of J/psi production. J/psi results over a wide range of center of mass energies (39-200 GeV) from PHENIX are discussed, in addition to a comprehensive comparison with other experiments

    Longitudinal hydrodynamics from event-by-event Landau initial conditions

    Get PDF
    We investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of \order{20-30\%} expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost-invariance holds at mid-rapidity is inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard.Comment: Accepted for publication, Phys.Rev.

    Hydrodynamics From Landau Initial Conditions

    Get PDF
    We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2]63

    Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at √sNN = 200, 62.4, 39, and 19.6 GeV

    Get PDF
    We present measurements of the elliptic flow (v(2)) as a function of transverse momentum (p(T)), pseudorapidity (eta), and centrality in d + Au collisions at root s(NN) = 200, 62.4, 39, and 19.6 GeV. The beam-energy scan of d + Au collisions provides a testing ground for the onset of flow signatures in small collision systems. We measure a nonzero v(2) signal at all four collision energies, which, at midrapidity and low p(T), is consistent with predictions from viscous hydrodynamic models. Comparisons with calculations from parton transport models (based on the AMPT Monte Carlo generator) show good agreement with the data at midrapidity to forward (d-going) rapidities and low p(T). At backward (Au-going) rapidities and p(T) \u3e 1.5GeV/c, the data diverges from AMPT calculations of v(2) relative to the initial geometry, indicating the possible dominance of nongeometry related correlations, referred to as nonflow. We also present measurements of the charged-particle multiplicity (d N-ch/d eta) as a function of eta in central d + Au collisions at the same energies. We find that in d + Au collisions at root s(NN) = 200 GeV the v(2) scales with d N-ch/d eta over all eta in the PHENIX acceptance. At root s(NN) = 62.4, and 39 GeV, v(2) scales with d N-ch/d eta at midrapidity and forward rapidity, but falls off at backward rapidity. This departure from the d N-ch/d eta scaling may be a further indication of nonflow effects dominating at backward rapidity

    Measurements of double-helicity asymmetries in inclusive J/Psi production in longitudinally polarized p plus p collisions at root s=510 GeV

    Get PDF
    We report the double-helicity asymmetry, A(LL)(J/Psi), in inclusive J/Psi production at forward rapidity as a function of transverse momentum p(T) and rapidity |y|. The data analyzed were taken during root s = 510 GeV longitudinally polarized p + p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J/Psi particles are predominantly produced through gluon-gluon scatterings, thus A(LL)(J/Psi) is sensitive to the gluon polarization inside the proton. We measured A(LL)(J/Psi) by detecting the decay daughter muon pairs mu(+)mu(-) within the PHENIX muon spectrometers in the rapidity range 1.2 \u3c |y| \u3c 2.2. In this kinematic range, we measured the A(LL)(J/Psi) to be 0.012 +/- 0.010 (stat) +/- 0.003 (syst). The A(LL)(J.Psi) can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x: one at moderate range x approximate to 5 x 10(-2) where recent data of jet and pi(0) double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x approximate to 2 x 10(-3). Thus our new results could be used to further constrain the gluon polarization for x \u3c 5 x 10(-2)

    Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p plus Au collisions at root S-NN=200 GeV

    Get PDF
    We present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow v(2) in high-multiplicity p + Au collisions at root S-NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and He-3+Au collisions demonstrates a relation between v(2) and the initial collision eccentricity epsilon(2), suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured v(2) and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems

    Measurement of the relative yields of psi(2S) to psi(1S) mesons produced at forward and backward rapidity in p plus p, p plus Al, p + Au, and He-3+Au collisions at root S-NN=200 GeV

    Get PDF
    The PHENIX Collaboration has measured the ratio of the yields of psi(2S) to psi(1S) mesons produced in p + p, p + Al, p + Au, and He-3+Au collisions at root S-NN = 200 GeV over the forward and backward rapidity intervals 1.2 \u3c | y | \u3c 2.2. We find that the ratio in p + p collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward (p-going or He-3-going) direction, the relative yield of psi(2S) mesons to psi(1S) mesons is consistent with the value measured in p + p collisions. However, in the backward (nucleus-going) direction, the psi(2S) meson is preferentially suppressed by a factor of similar to 2. This suppression is attributed in some models to the breakup of the weakly bound psi(2S) meson through final-state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states

    Correlations of μμ, eμ, and ee pairs in p+p collisions at s√=200 GeV and implications for cc¯ and bb¯ production mechanisms

    Get PDF
    PHENIX has measured the azimuthal correlations of muon pairs from charm and bottom semi-leptonic decays in p+p collisions at s√=200 GeV, using a novel analysis technique utilizing both unlike- and like-sign muon pairs to separate charm, bottom and Drell-Yan contributions. The dimuon measurements combined with the previous electron-muon and dielectron measurements span a wide range in rapidity, and are well described by PYTHIA Tune A. Through a Bayesian analysis based on PYTHIA Tune A, we show that leading order pair creation is the dominant (76%±1419%) contribution for bb¯ production, whereas the data favor the scenario in which next-to-leading-order processes dominate cc¯ production. The small contribution of next-to-leading-order processes in bb¯ production at the collision energies of the Relativistic Heavy Ion Collider contrasts with the case at Large-Hadron-Collider energies, where next-to-leading-order processes are expected to dominate

    Nonperturbative-transverse-momentum broadening in dihadron angular correlations in √sNN = 200 GeV proton-nucleus collisions

    Get PDF
    The PHENIX collaboration has measured high-pT dihadron correlations in p+p, p+Al, and p+Au collisions at √sNN=200 GeV. The correlations arise from inter- and intrajet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of pout, the transverse-momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial- and final-state transverse momenta. These distributions are measured multidifferentially as a function of xE, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side pout widths, sensitive to fragmentation transverse momentum, show no significant broadening between p+Au, p+Al, and p+p. The away-side nonperturbative pout widths are found to be broadened in p+Au when compared to p+p; however, there is no significant broadening in p+Al compared to p+p collisions. The data also suggest that the away-side pout broadening is a function of Ncoll, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial- and final-state transverse-momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed
    • …
    corecore