42 research outputs found

    A High-Performance Algorithm to Calculate Spin- and Parity-Dependent Nuclear Level Densities

    Full text link
    A new algorithm for calculating the spin- and parity-dependent shell model nuclear level densities using the moments method in the proton-neutron formalism is presented. A new, parallelized code based on this algorithm was developed and tested using up to 4000 cores for a set of nuclei from the sd-, pf-, and pf + g9/2 - model spaces. By comparing the nuclear level densities at low excitation energy for a given nucleus calculated in two model spaces, such as pf and pf + g9/2, one could estimate the ground state energy in the larger model space, which is not accessible to direct shell model calculations due to the unmanageable dimension. Examples for the ground state energies of for 64Ge and 68Se in the pf + g9/2 model space are presented.Comment: 10 pages, 7 figures, small corrections were mad

    Nuclear Structure Aspects of Neutrinoless Double Beta Decay

    Full text link
    We decompose the neutrinoless double-beta decay matrix elements into sums of products over the intermediate nucleus with two less nucleons. We find that the sum is dominated by the J^pi=0^+ ground state of this intermediate nucleus for both the light and heavy neutrino decay processes. This provides a new theoretical tool for comparing and improving nuclear structure models. It also provides the connection to two-nucleon transfer experiments.Comment: 5 pages, 6 figure

    High-Performance Algorithm for Calculating Non-Spurious Spin- and Parity-Dependent Nuclear Level Densities

    Full text link
    A new high-performance algorithm for calculating the spin- and parity-dependent shell model nuclear level densities using methods of statistical spectroscopy in the proton-neutron formalism was recently proposed. When used in valence spaces that cover more than one major harmonic oscillator shell, this algorithm mixes the genuine intrinsic states with spurious center-of-mass excitations. In this paper we present an advanced algorithm, based on the recently proposed statistical moments method, that eliminates the spurious states. Results for unnatural parity states of several sd-shell nuclei are presented and compared with those of exact shell model calculations and experimental data.Comment: 8 pages, 5 figure

    Transport Through Nanostructures with Asymmetric Coupling to the Leads

    Full text link
    Using an approach to open quantum systems based on the effective non-Hermitian Hamiltonian, we fully describe transport properties for a paradigmatic model of a coherent quantum transmitter: a finite sequence of square potential barriers. We consider the general case of asymmetric external barriers and variable coupling strength to the environment. We demonstrate that transport properties are very sensitive to the degree of opening of the system and determine the parameters for maximum transmission at any given degree of asymmetry. Analyzing the complex eigenvalues of the non-Hermitian Hamiltonian, we show a double transition to a super-radiant regime where the transport properties and the structure of resonances undergo a strong change. We extend our analysis to the presence of disorder and to higher dimensions.Comment: submitted to Phys. Rev.
    corecore