5 research outputs found

    Commissioning of the ALTO 50 MeV electron linac

    No full text
    online : http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/MOPLS113.pdfThe ALTO 50 MeV electron linac is dedicated to the production of neutron-rich radioactive nuclei using the photo-fission process and the optimisation of the targetion source system for SPIRAL 2 and EURISOL projects. The accelerator consists of a 3 MeV injector (old test station of LAL, Laboratoire de l'Accélérateur Linéaire d'Orsay), LIL (Linac Injector of LEP) accelerating structure, RF power plant, beam line, control system and diagnostics. Specified and measured beam parameters will be compared to show the performances of the photofission process and eventually other applications

    Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV

    No full text
    Responses of Fuji Imaging Plates (IPs) to proton have been measured in the range 1-200 MeV. Mono-energetic protons were produced with the 15 MV ALTO-Tandem accelerator of the Institute of Nuclear Physics (Orsay, France) and, at higher energies, with the 200-MeV isochronous cyclotron of the Institut Curie—Centre de Protonthérapie d’Orsay (Orsay, France). The experimental setups are described and the measured photo-stimulated luminescence responses for MS, SR, and TR IPs are presented and compared to existing data. For the interpretation of the results, a sensitivity model based on the Monte Carlo GEANT4 code has been developed. It enables the calculation of the response functions in a large energy range, from 0.1 to 200 MeV. Finally, we show that our model reproduces accurately the response of more complex detectors, i.e., stack of high-Z filters and IPs, which could be of great interest for diagnostics of Petawatt laser accelerated particle

    Calibration of the low-energy channel Thomson parabola of the LMJ-PETAL diagnostic SEPAGE with protons and carbon ions

    No full text
    The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12C6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12C6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10-3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies
    corecore