3 research outputs found

    Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI

    Get PDF
    To develop technical recommendations on the acquisition and post-processing of renal longitudinal (T1) and transverse (T2) relaxation time mapping. A multidisciplinary panel consisting of 18 experts in the field of renal T1 and T2 mapping participated in a consensus project, which was initiated by the European Cooperation in Science and Technology Action PARENCHIMA CA16103. Consensus recommendations were formulated using a two-step modified Delphi method. The first survey consisted of 56 items on T1 mapping, of which 4 reached the pre-defined consensus threshold of 75% or higher. The second survey was expanded to include both T1 and T2 mapping, and consisted of 54 items of which 32 reached consensus. Recommendations based were formulated on hardware, patient preparation, acquisition, analysis and reporting. Consensus-based technical recommendations for renal T1 and T2 mapping were formulated. However, there was considerable lack of consensus for renal T1 and particularly renal T2 mapping, to some extent surprising considering the long history of relaxometry in MRI, highlighting key knowledge gaps that require further work. This paper should be regarded as a first step in a long-term evidence-based iterative process towards ever increasing harmonization of scan protocols across sites, to ultimately facilitate clinical implementation

    Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience

    No full text
    Background: Inflammation following acute myocardial infarction (MI) has detrimental effects on reperfusion, myocardial remodelling, and ventricular function. Magnetic resonance imaging using ultrasmall superparamagnetic particles of iron oxide can detect cellular inflammation in tissues, and we therefore explored their role in acute MI in humans. Methods and Results: Sixteen patients with acute ST-segment elevation MI were recruited to undergo 3 sequential magnetic resonance scans within 5 days of admission at baseline, 24 and 48 hours following no infusion (controls; n=6) or intravenous infusion of ultrasmall superparamagnetic particles of iron oxide (n=10; 4 mg/kg). T2*-weighted multigradient-echo sequences were acquired and R2* values were calculated for specific regions of interest. In the control group, R2* values remained constant in all tissues across all scans with excellent repeatability (bias of −0.208 s−1, coefficient of repeatability of 26.96 s−1; intraclass coefficient 0.989). Consistent with uptake by the reticuloendothelial system, R2* value increased in the liver (84±49.5 to 319±70.0 s−1; P<0.001) but was unchanged in skeletal muscle (54±8.4 to 67.0±9.5 s−1; P>0.05) 24 hours after administration of ultrasmall superparamagnetic particles of iron oxide. In the myocardial infarct, R2* value increased from 41.0±12.0 s−1 (baseline) to 155±45.0 s−1 (P<0.001) and 124±35.0 s−1 (P<0.05) at 24 and 48 hours, respectively. A similar but lower magnitude response was seen in the remote myocardium, where it increased from 39±3.2 s−1 (baseline) to 80±14.9 s−1 (P<0.001) and 67.0±15.7 s−1 (P<0.05) at 24 and 48 hours, respectively. Conclusions: Following acute MI, uptake of ultrasmall superparamagnetic particles of iron oxide occurs with the infarcted and remote myocardium. This technique holds major promise as a potential method for assessing cellular myocardial inflammation and left ventricular remodelling, which may have a range of applications in patients with MI and other inflammatory cardiac conditions

    In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans

    No full text
    Background: Cell therapy is an emerging and exciting novel treatment option for cardiovascular disease that relies on the delivery of functional cells to their target site. Monitoring and tracking cells to ensure tissue delivery and engraftment is a critical step in establishing clinical and therapeutic efficacy. The study aims were (1) to develop a Good Manufacturing Practice–compliant method of labeling competent peripheral blood mononuclear cells with superparamagnetic particles of iron oxide (SPIO), and (2) to evaluate its potential for magnetic resonance cell tracking in humans. Methods and Results: Peripheral blood mononuclear cells 1–5×109 were labeled with SPIO. SPIO-labeled cells had similar in vitro viability, migratory capacity, and pattern of cytokine release to unlabeled cells. After intramuscular administration, up to 108 SPIO-labeled cells were readily identifiable in vivo for at least 7 days using magnetic resonance imaging scanning. Using a phased-dosing study, we demonstrated that systemic delivery of up to 109 SPIO-labeled cells in humans is safe, and cells accumulating in the reticuloendothelial system were detectable on clinical magnetic resonance imaging. In a healthy volunteer model, a focus of cutaneous inflammation was induced in the thigh by intradermal injection of tuberculin. Intravenously delivered SPIO-labeled cells tracked to the inflamed skin and were detectable on magnetic resonance imaging. Prussian blue staining of skin biopsies confirmed iron-laden cells in the inflamed skin. Conclusions: Human peripheral blood mononuclear cells can be labeled with SPIO without affecting their viability or function. SPIO labeling for magnetic resonance cell tracking is a safe and feasible technique that has major potential for a range of cardiovascular applications including monitoring of cell therapies and tracking of inflammatory cells
    corecore