335 research outputs found

    G-equation modelling of thermo-acoustic oscillations of partially-premixed flames

    Get PDF
    Numerical simulations aid combustor design to avoid and reduce thermo-acoustic oscillations. Non-linear heat release rate estimation and its modelling are essential for the prediction of saturation amplitudes of limit cycles. The heat release dynamics of flames can be approximated by a Flame Describing Function (FDF). To calculate an FDF, a wide range of forcing amplitudes and frequencies needs to be considered. For this reason, we present a computationally inexpensive level-set approach, which accounts for equivalence ratio perturbations on flames with arbitrarily-complex shapes. The influence of flame parameters and modelling approaches on flame describing functions and time delay coefficient distributions are discussed in detail. The numerically-obtained flame describing functions are compared with experimental data and used in an acoustic network model for limit cycle prediction. A reasonable agreement of the heat release gain and limit cycle frequency is achieved even with a simplistic, analytical velocity fluctuation model. However, the phase decay is over-predicted. For sophisticated flame shapes, only the realistic modelling of large-scale flow structures allows the correct phase decay predictions of the heat release rate response.This work was conducted within the EU 7th Framework Project Joint Technology Initiatives - Clean Sky (AMEL- Advanced Methods for the Prediction of Lean-burn Combustor Unsteady Phenomena), project number: JTI-CS-2013-3-SAGE- 06-009 / 641453. This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council

    Flow induced energy losses in the exhaust port of an internal combustion engine

    Get PDF
    A numerical study of the flow in the exhaust port geometry of a Scania heavy-duty diesel engine is performed using the large eddy simulation (LES) and an unsteady Reynolds-Averaged Navier–Stokes (URANS) simulation approach. The calculations are performed at fixed valve positions and stationary boundary conditions to mimic the setup of an air flow bench experiment, which is commonly used to acquire input data for one-dimensional engine simulations. The numerical results are validated against available experimental data. The complex three-dimensional (3D) flow structures generated in the flow field are qualitatively assessed through visualization and analyzed by statistical means. For low valve lifts, the major source of kinetic energy losses occurs in the proximity of the valve. Flow separation occurs immediately downstream of the valve seat. Strong helical flow structures are observed in the exhaust manifold, which are caused due an interaction of the exhaust port streams in the port geometry.</jats:p
    • …
    corecore