103 research outputs found

    Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    Full text link
    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select between different arrays around a cylindrical supporting structure.Comment: Keywords: conformal antenna, millimeter-wave communications, patch antenna array. 11 pages, 10 figures, 1 tabl

    Effect of alloying elements (Zr, Hf, Co), heat and mechanical treatment conditions on the phase composition and magnetic properties of SmFe11Ti compounds with ThMn12 structure

    Full text link
    The results of thermomagnetic, metallographic and X-ray diffraction phase analysis as well as the measurements of specific magnetization (σs), Curie temperature (TC), coercive force (HC) of (Sm,M)(Fe,M)12-xTix alloys samples, where M = Zr, Hf, Co with the ThMn12 main phase structure (1-12) are presented. The effect of the annealing temperature and the cooling rate on the formation of 1-12 phase and its magnetic properties, including the effect of high-energy milling on the magnetic hysteresis properties and alloys structure are described. It was found that the highest magnetic characteristics such as σs = 112.6 emu/g and TC = 600°C are attained in the (Sm0.8Zr0.2)(Fe0.75Co0.25)11.4Ti0.6 alloy after its annealing at 1050 °C and rapid cooling. It is noted that a mechanical milling of the alloy leads to 1-12 phase amorphization which accompanied by an α-(Fe) or metal Co phases impurity formation. © 2018 The Authors, published by EDP Sciences.The work was supported by the State contracts No. 3.6121.2017/ 8.9 between UrFU and the Ministry of Education and Science of Russian Federation and by the Fund of assistance to development of small enterprises in scientific-technical sphere No. 11996GU / 017

    Spin-glass transition in porous spheres BiFeO3

    Full text link
    Magnetic properties of porous spheres BiFeO3 have been studied at temperatures ranging from 2 to 300 K. A transition to cluster spin glass state has been detected in the region of about 100 K. The presence of the transition is confirmed by nonlinear variation of coercive force and the appearance of exchange displacement of magnetic hysteresis loops at temperature below 100 K. Temperature dependence of magnetization for zero-field cooled regime exhibit a maximum at some temperature Tm. The function Tm(H) (H is magneic field) changes in accordance with Almeida-Thouless line. The performed measurements of the frequency dependence of AC susceptibility confirm the behavior of spin glass with spin freezing temperature Tf = 116 K. The critical index zν = 2.5 agrees well with the mean-field theory zν = 2.0. © 2020, ITMO University. All rights reserved.This work was supported by a research program at the Institute of Solid State Chemistry. The authors are grateful to Dr. Maria V. Lukashova (OOO “Tescan”, Saint Petersburg, Russia) for scanning microscopy and 3D FIB-SEM tomography

    Disentangling the conductivity spectra of two-dimensional organic conductors

    Get PDF
    The optical spectrum of a κ -phase organic conductor is thoroughly analyzed for the example of κ -(BEDT-TTF) 2 Cu [ N(CN) 2 ] Br 0.85 Cl 0.15 in order to identify its various contributions. It is shown how the complex spectra can be decomposed using different approaches; the intradimer and interdimer contributions are discussed. In particular the fingerprints of electronic correlations in these spectra are considered

    Charge-transfer processes in radical ion molecular conductors κ-(BEDT-TTF)2Cu[N(CN)2]Br x Cl1 − x : The superconductor (x = 0.9) and the conductor with the metal-insulator transition (x = 0)

    Get PDF
    Optical spectral investigations of low-dimensional organic molecular conductors κ-(BEDT-TTF)2Cu[N(CN)2]Br x Cl1 − x with x = 0.9 (the superconductor with T c = 11.3 K) and x = 0 (the metal with the metal-insulator transition at T < 50 K) are performed in the range 50–6000 cm−1 (6 meV–0.74 eV) at temperatures from 300 to 20 K. The optical conductivity spectra are quantitatively analyzed in terms of the proposed model, according to which the charge transfer involves two types of charge carriers, i.e., electrons (holes) localized on clusters (dimers and tetramers formed by BEDT-TTF molecules) and quasi-free charge carriers, with the use of the tetramer “cluster“ model based on the Hubbard Hamiltonian for correlated electrons and the Drude model for quasi-free charge carriers. Physical parameters of the model, such as the energy of Coulomb repulsion between two electrons (holes) in one molecule, the transfer integrals between molecules inside the dimer and between dimers, and the electron-molecular vibration coupling constants, are determined. The anisotropy of the spectra in the conducting plane is explained. The inference is made that only electrons localized on clusters couple with intramolecular vibrations

    Zero-bias photodetection in 2d materials via geometric design of contacts

    Full text link
    Structural or crystal asymmetry are necessary conditions for emergence of zero-bias photocurrent in light detectors. Structural asymmetry has been typically achieved via pnp-n doping being a technologically complex process. Here, we propose an alternative approach to achieve zero-bias photocurrent in 2d material flakes exploiting the geometrical non-equivalence of source and drain contacts. As a prototypical example, we equip a square-shaped flake of PdSe2_2 with mutually orthogonal metal leads. Upon uniform illumination with linearly-polarized light, the device demonstrates non-zero photocurrent which flips its sign upon 90^\circ polarization rotation. The origin of zero-bias photocurrent lies in polarization-dependent lightning-rod effect. It enhances the electromagnetic field at one contact from the orthogonal pair, and selectively activates the internal photoeffect at the respective metal-PdSe2_2 Schottky junction. The proposed technology of contact engineering can be extended to arbitrary 2d materials and detection of both polarized and natural light

    SUBSTITUTION OF Co ON THE CRYSTAL STRUCTURE IN THE LiNi1-XCoXPO4 SYSTEM

    Full text link
    We present a detailed structural study of the LiNi1-xCoxPO4 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) polycrystalline samples using X-ray diffraction (XRD) and Raman scattering.The reported study was funded by RFBR (project No. 19-32-60011)

    Bandwidth-controlled Mott transition in κ(BEDTTTF)2Cu[N(CN)2]BrxCl1x\kappa-(BEDT-TTF)_2 Cu [N(CN)_2] Br_x Cl_{1-x} I. Optical studies of localized charge excitations

    Full text link
    Infrared reflection measurements of the half-filled two-dimensional organic conductors κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_{2}]Brx_{x}Cl1x_{1-x} were performed as a function of temperature (5K<T<3005 {\rm K}<T<300 K) and Br-substitution (x=0x=0%, 40%, 73%, 85%, and 90%) in order to study the metal-insulator transition. We can distinguish absorption processes due to itinerant and localized charge carriers. The broad mid-infrared absorption has two contributions: transitions between the two Hubbard bands and intradimer excitations from the charges localized on the (BEDT-TTF)2_2 dimer. Since the latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both electronic and vibrational features provides a tool to disentangle these contributions and to follow their temperature and electronic-correlations dependence. Calculations based on the cluster model support our interpretation.Comment: 12 pages, 12 figure
    corecore