332 research outputs found

    Tree Amplitudes and Two-loop Counterterms in D=11 Supergravity

    Get PDF
    We compute the tree level 4-particle bosonic scattering amplitudes in D=11 supergravity. By construction, they are part of a linearized supersymmetry-, coordinate- and 3-form gauge-invariant. While this on-shell invariant is nonlocal, suitable SUSY-preserving differentiations turn it into a local one with correct dimension to provide a natural lowest (two-loop) order counterterm candidate. Its existence shows explicitly that no symmetries protect this ultimate supergravity from the nonrenormalizability of its lower-dimensional counterparts.Comment: 14 page

    Gauge Invariance, Finite Temperature and Parity Anomaly in D=3

    Get PDF
    The effective gauge field actions generated by charged fermions in QED3QED_3 and QCD3QCD_3 can be made invariant under both small and large gauge transformations at any temperature by suitable regularization of the Dirac operator determinant, at the price of parity anomalies. We resolve the paradox that the perturbative expansion is not invariant, as manifested by the temperature dependence of the induced Chern-Simons term, by showing that large (unlike small) transformations and hence their Ward identities, are not perturbative order-preserving. Our results are illustrated through concrete examples of field configurations.Comment: 4 pages, RevTe

    Effective QED Actions: Representations, Gauge Invariance, Anomalies and Mass Expansions

    Get PDF
    We analyze and give explicit representations for the effective abelian vector gauge field actions generated by charged fermions with particular attention to the thermal regime in odd dimensions, where spectral asymmetry can be present. We show, through ζ−\zeta-function regularization, that both small and large gauge invariances are preserved at any temperature and for any number of fermions at the usual price of anomalies: helicity/parity invariance will be lost in even/odd dimensions, and in the latter even at zero mass. Gauge invariance dictates a very general ``Fourier'' representation of the action in terms of the holonomies that carry the novel, large gauge invariant, information. We show that large (unlike small) transformations and hence their Ward identities, are not perturbative order-preserving, and clarify the role of (properly redefined) Chern-Simons terms in this context. From a powerful representation of the action in terms of massless heat kernels, we are able to obtain rigorous gauge invariant expansions, for both small and large fermion masses, of its separate parity even and odd parts in arbitrary dimension. The representation also displays both the nonperturbative origin of a finite renormalization ambiguity, and its physical resolution by requiring decoupling at infinite mass. Finally, we illustrate these general results by explicit computation of the effective action for some physical examples of field configurations in the three dimensional case, where our conclusions on finite temperature effects may have physical relevance. Nonabelian results will be presented separately.Comment: 36 pages, RevTeX, no figure

    Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry

    Full text link
    The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from http://www.esam.nwu.edu/riecke/lit/lit.htm

    Unbalanced Holographic Superconductors and Spintronics

    Get PDF
    We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS_4 black hole. The chemical potential imbalance is implemented by turning on the temporal component of a U(1)_B "spin" field under which the scalar field is uncharged. We study the phase diagram of the model and comment on the eventual (non) occurrence of LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and "spin" transport, implementing a holographic realization (and a generalization thereof to superconducting setups) of Mott's two-current model which provides the theoretical basis of modern spintronics. Finally we comment on possible string or M-theory embeddings of our model and its higher dimensional generalizations, within consistent Kaluza-Klein truncations and brane-anti brane setups.Comment: 45 pages, 15 figures; v2: two paragraphs below eq. (3.1) slightly modified, figure 5 (left) replaced, references added; v3: typos corrected, comments added, figure 12 replace

    The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories

    Full text link
    We construct a generalized cusped Wilson loop operator in N = 6 super Chern-Simons-matter theories which is locally invariant under half of the supercharges. It depends on two parameters and interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines, representing a natural generalization of the quark-antiquark potential in ABJ(M) theories. For particular choices of the parameters we obtain 1/6 BPS configurations that, mapped on S^2 by a conformal transformation, realize a three-dimensional analogue of the wedge DGRT Wilson loop of N = 4. The cusp couples, in addition to the gauge and scalar fields of the theory, also to the fermions in the bifundamental representation of the U(N)xU(M) gauge group and its expectation value is expressed as the holonomy of a suitable superconnection. We discuss the definition of these observables in terms of traces and the role of the boundary conditions of fermions along the loop. We perform a complete two-loop analysis, obtaining an explicit result for the generalized cusp at the second non-trivial order, from which we read off the interaction potential between heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility to explore in the three-dimensional case the connection between localization properties and integrability, recently advocated in D = 4.Comment: 53 pages, 10 figures, added references, this is the version appeared on JHE

    Generalized cusp in AdS_4 x CP^3 and more one-loop results from semiclassical strings

    Get PDF
    We evaluate the exact one-loop partition function for fundamental strings whose world-surface ends on a cusp at the boundary of AdS_4 and has a "jump" in CP^3. This allows us to extract the stringy prediction for the ABJM generalized cusp anomalous dimension Gamma_{cusp}^{ABJM} (phi,theta) up to NLO in sigma-model perturbation theory. With a similar analysis, we present the exact partition functions for folded closed string solutions moving in the AdS_3 parts of AdS_4 x CP^3 and AdS_3 x S^3 x S^3 x S^1 backgrounds. Results are obtained applying to the string solutions relevant for the AdS_4/CFT_3 and AdS_3/CFT_2 correspondence the tools previously developed for their AdS_5 x S^5 counterparts.Comment: 48 pages, 2 figures, version 3, corrected misprints in formulas 2.12, B.86, C.33, added comment on verification of the light-like limi

    Convective nature of planimetric instability in meandering river dynamics

    Get PDF
    The convective nature of the linear instability of meandering river dynamics is analytically demonstrated and the corresponding Green's function is derived. The wave packet due to impulsive disturbance migrates along a river either downstream or upstream, depending on the subresonant or superresonant conditions. The influence of the parameters that govern the meandering process is shown and the role of the fluid dynamic detail used to describe the morphodynamic problem is discussed. A numerical simulation of the river planimetry is also develope

    Electrospinning piezoelectric fibers for biocompatible devices

    Get PDF
    The field of nanotechnology has been gaining great success due to its potential in developing new generations of nanoscale materials with unprecedented properties and enhanced biological responses. This is particularly exciting using nanofibers, as their mechanical and topographic characteristics can approach those found in naturally occurring biological materials. Electrospinning is a key technique to manufacture ultrafine fibers and fiber meshes with multifunctional features, such as piezoelectricity, to be available on a smaller length scale, thus comparable to subcellular scale, which makes their use increasingly appealing for biomedical applications. These include biocompatible fiber-based devices as smart scaffolds, biosensors, energy harvesters, and nanogenerators for the human body. This paper provides a comprehensive review of current studies focused on the fabrication of ultrafine polymeric and ceramic piezoelectric fibers specifically designed for, or with the potential to be translated toward, biomedical applications. It provides an applicative and technical overview of the biocompatible piezoelectric fibers, with actual and potential applications, an understanding of the electrospinning process, and the properties of nanostructured fibrous materials, including the available modeling approaches. Ultimately, this review aims at enabling a future vision on the impact of these nanomaterials as stimuli-responsive devices in the human body
    • 

    corecore