496 research outputs found

    High-energy astroparticle physics

    Full text link
    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gamma-ray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review three different UHE neutrino detection techniques and show the present status of searches for diffuse neutrino flux and point sources of neutrinos.Comment: 29 pages, Lectures given at the 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 200

    Constraints on top-down models for the origin of UHECRs from the Pierre Auger Observatory data

    Full text link
    Taking into account the Pierre Auger Observatory limits on the photon fraction among the highest energy cosmic rays, we show that the models based on the decay of super-heavy dark matter in the halo of our Galaxy are essentially excluded from being the sources of UHECRs unless their contribution becomes significant only above 100 EeV. Some top-down models based on topological defects are however compatible with the current data and may be best constrained in the future by the high-energy neutrino flux limit.Comment: Contribution to the 30th International Cosmic Ray Conference, Merida, Mexico, July 200

    Galactic and extragalactic contributions to the astrophysical muon neutrino signal

    Full text link
    Spectral and anisotropy properties of IceCube astrophysical neutrino signal reveal an evidence for a significant Galactic contribution to the neutrino flux in Southern hemisphere. We check if the Galactic contribution is detectable in the astrophysical muon neutrino flux observed from a low positive declinations region of the Northern sky. Estimating the Galactic neutrino flux in this part of the sky from gamma-ray and Southern sky neutrino data, we find that the Northern sky astrophysical muon neutrino signal shows an excess over the Galactic flux. This points to the presence of an additional hard spectrum (extragalactic or large scale Galactic halo) component of astrophysical neutrino flux. We show that the Galactic flux component should still be detectable in the muon neutrino data in a decade long IceCube exposure.Comment: 4 pages, 3 figure

    Galactic sources of E>100 GeV gamma-rays seen by Fermi telescope

    Full text link
    We perform a search for sources of gamma-rays with energies E>100 GeV at low Galactic latitudes |b|<10 deg using the data of Fermi telescope. To separate compact gamma-ray sources from the diffuse emission from the Galaxy, we use the Minimal Spanning Tree method with threshold of 5 events in inner Galaxy (Galactic longitude |l|<60 deg) and of 3 events in outer Galaxy. Using this method, we identify 22 clusters of very-high-energy (VHE) gamma-rays, which we consider as "source candidates". 3 out of 22 event clusters are expected to be produced in result of random coincidences of arrival directions of diffuse background photons. To distinguish clusters of VHE events produced by real sources from the background we perform likelihood analysis on each source candidate. We present a list of 19 higher significance sources for which the likelihood analysis in the energy band E>100 GeV gives Test Statistics (TS) values above 25. Only 10 out of the 19 high-significance sources can be readily identified with previously known VHE gamma-ray sources. 4 sources could be parts of extended emission from known VHE gamma-ray sources. Five sources are new detections in the VHE band. Among these new detections we tentatively identify one source as a possible extragalactic source PMN J1603-4904 (a blazar candidate), one as a pulsar wind nebula around PSR J1828-1007. High significance cluster of VHE events is also found at the position of a source coincident with the Eta Carinae nebula. In the Galactic Center region, strong VHE gamma-ray signal is detected from Sgr C molecular cloud, but not from the Galactic Center itself.Comment: 6 pages, 2 figure

    Evidence for the Galactic contribution to the IceCube astrophysical neutrino flux

    Full text link
    We show that the Galactic latitude distribution of IceCube astrophysical neutrino events with energies above 100~TeV is inconsistent with the isotropic model of the astrophysical neutrino flux. Namely, the Galactic latitude distribution of the events shows an excess at low latitudes |b|<10 degrees and a deficit at high Galactic latitude |b|> 50 degrees. We use Monte-Carlo simulations to show that the inconsistency of the isotropic signal model with the data is at > 3 sigma level, after the account of trial factors related to the choice of the low-energy threshold and Galactic latitude binning in our analysis.Comment: 4 pages, 2 figures, accepted to Astroparticle Physic

    Constraints on secondary 10-100 EeV gamma ray flux in the minimal bottom-up model of Ultra High Energy Cosmic Rays

    Full text link
    In a recently proposed model the cosmic rays spectrum at energies above EeV can be fitted with a minimal number of unknown parameters assuming that the extragalactic cosmic rays are only protons with a power law source spectrum. Within this minimal model, after fitting the observed HiRes spectrum with four parameters (proton injection spectrum power law index, maximum energy, minimum distance to sources and evolution parameter) we compute the flux of ultra-high energy photons due to photon-pion production and e+e- pair production by protons for several radio background models and a range of average extragalactic magnetic fields.Comment: Contribution to the 30th International Cosmic Ray Conference, Merida, Mexico, July 2007, 4 pages, 4 figure

    Anisotropic Cosmic Ray Diffusion and its Implications for Gamma-Ray Astronomy

    Full text link
    Analyses of TeV-PeV cosmic ray (CR) diffusion around their sources usually assume either isotropic diffusion or anisotropic diffusion due to the regular Galactic magnetic field. We show that none of them are adequate on distances smaller than the maximal scale Lmax ~ 100 pc of fluctuations in the turbulent interstellar magnetic field. As a result, we predict anisotropic gamma-ray emissions around CR proton and electron sources, even for uniform densities of target gas. The centers of extended emission regions may have non-negligible offsets from their sources, leading to risks of misidentification. Gamma-rays from CR filaments have steeper energy spectra than those from surrounding regions. We point out that gamma-ray telescopes can be used in the future as a new way to probe and deduce the parameters of the interstellar magnetic field.Comment: 13 pages (2 columns), 9 figures. Published in Physical Review

    Detection prospects of the Telescope Array hotspot by space observatories

    Full text link
    In the present-day cosmic ray data, the strongest indication of anisotropy of the ultrahigh energy cosmic rays is the 20-degree hotspot observed by the Telescope Array with the statistical significance of 3.4\sigma. In this work, we study the possibility of detecting such a spot by space-based all-sky observatories. We show that if the detected luminosity of the hotspot is attributed to a physical effect and not a statistical fluctuation, the KLYPVE and JEM-EUSO experiments would need to collect ~300 events with E>57 EeV in order to detect the hotspot at the 5\sigma\ confidence level with the 68% probability. We also study the dependence of the detection prospects on the hotspot luminosity.Comment: 4 pages; v2: minor style changes to match the published versio
    corecore