126 research outputs found
Dynamics of dilute disordered models: a solvable case
We study the dynamics of a dilute spherical model with two body interactions
and random exchanges. We analyze the Langevin equations and we introduce a
functional variational method to study generic dilute disordered models. A
crossover temperature replaces the dynamic transition of the fully-connected
limit. There are two asymptotic regimes, one determined by the central band of
the spectral density of the interactions and a slower one determined by
localized configurations on sites with high connectivity. We confront the
behavior of this model to the one of real glasses.Comment: 7 pages, 4 figures. Clarified, final versio
Systematic perturbation approach for a dynamical scaling law in a kinetically constrained spin model
The dynamical behaviours of a kinetically constrained spin model
(Fredrickson-Andersen model) on a Bethe lattice are investigated by a
perturbation analysis that provides exact final states above the nonergodic
transition point. It is observed that the time-dependent solutions of the
derived dynamical systems obtained by the perturbation analysis become
systematically closer to the results obtained by Monte Carlo simulations as the
order of a perturbation series is increased. This systematic perturbation
analysis also clarifies the existence of a dynamical scaling law, which
provides a implication for a universal relation between a size scale and a time
scale near the nonergodic transition.Comment: 17 pages, 7 figures, v2; results have been refined, v3; A figure has
been modified, v4; results have been more refine
Sparse random matrices: the eigenvalue spectrum revisited
We revisit the derivation of the density of states of sparse random matrices.
We derive a recursion relation that allows one to compute the spectrum of the
matrix of incidence for finite trees that determines completely the low
concentration limit. Using the iterative scheme introduced by Biroli and
Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the
density of states expected to hold exactly in the opposite limit of large but
finite concentration. The combination of the two methods yields a very simple
simple geometric interpretation of the tails of the spectrum. We test the
analytic results with numerical simulations and we suggest an indirect
numerical method to explore the tails of the spectrum.Comment: 18 pages, 7 figures. Accepted version, minor corrections, references
adde
Analytic determination of dynamical and mosaic length scales in a Kac glass model
We consider a disordered spin model with multi-spin interactions undergoing a
glass transition. We introduce a dynamic and a static length scales and compute
them in the Kac limit (long--but--finite range interactions). They diverge at
the dynamic and static phase transition with exponents (respectively) -1/4 and
-1. The two length scales are approximately equal well above the mode coupling
transition. Their discrepancy increases rapidly as this transition is
approached. We argue that this signals a crossover from mode coupling to
activated dynamics.Comment: 4 pages, 4 eps figures. New version conform to the published on
Approximation schemes for the dynamics of diluted spin models: the Ising ferromagnet on a Bethe lattice
We discuss analytical approximation schemes for the dynamics of diluted spin
models. The original dynamics of the complete set of degrees of freedom is
replaced by a hierarchy of equations including an increasing number of global
observables, which can be closed approximately at different levels of the
hierarchy. We illustrate this method on the simple example of the Ising
ferromagnet on a Bethe lattice, investigating the first three possible
closures, which are all exact in the long time limit, and which yield more and
more accurate predictions for the finite-time behavior. We also investigate the
critical region around the phase transition, and the behavior of two-time
correlation functions. We finally underline the close relationship between this
approach and the dynamical replica theory under the assumption of replica
symmetry.Comment: 21 pages, 5 figure
Computing a Knot Invariant as a Constraint Satisfaction Problem
We point out the connection between mathematical knot theory and spin
glass/search problem. In particular, we present a statistical mechanical
formulation of the problem of computing a knot invariant; p-colorability
problem, which provides an algorithm to find the solution. The method also
allows one to get some deeper insight into the structural complexity of knots,
which is expected to be related with the landscape structure of constraint
satisfaction problem.Comment: 6 pages, 3 figures, submitted to short note in Journal of Physical
Society of Japa
Message passing for vertex covers
Constructing a minimal vertex cover of a graph can be seen as a prototype for
a combinatorial optimization problem under hard constraints. In this paper, we
develop and analyze message passing techniques, namely warning and survey
propagation, which serve as efficient heuristic algorithms for solving these
computational hard problems. We show also, how previously obtained results on
the typical-case behavior of vertex covers of random graphs can be recovered
starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR
Exact solution of the Bose-Hubbard model on the Bethe lattice
The exact solution of a quantum Bethe lattice model in the thermodynamic
limit amounts to solve a functional self-consistent equation. In this paper we
obtain this equation for the Bose-Hubbard model on the Bethe lattice, under two
equivalent forms. The first one, based on a coherent state path integral, leads
in the large connectivity limit to the mean field treatment of Fisher et al.
[Phys. Rev. B {\bf 40}, 546 (1989)] at the leading order, and to the bosonic
Dynamical Mean Field Theory as a first correction, as recently derived by
Byczuk and Vollhardt [Phys. Rev. B {\bf 77}, 235106 (2008)]. We obtain an
alternative form of the equation using the occupation number representation,
which can be easily solved with an arbitrary numerical precision, for any
finite connectivity. We thus compute the transition line between the superfluid
and Mott insulator phases of the model, along with thermodynamic observables
and the space and imaginary time dependence of correlation functions. The
finite connectivity of the Bethe lattice induces a richer physical content with
respect to its infinitely connected counterpart: a notion of distance between
sites of the lattice is preserved, and the bosons are still weakly mobile in
the Mott insulator phase. The Bethe lattice construction can be viewed as an
approximation to the finite dimensional version of the model. We show indeed a
quantitatively reasonable agreement between our predictions and the results of
Quantum Monte Carlo simulations in two and three dimensions.Comment: 27 pages, 16 figures, minor correction
Reconstruction of Random Colourings
Reconstruction problems have been studied in a number of contexts including
biology, information theory and and statistical physics. We consider the
reconstruction problem for random -colourings on the -ary tree for
large . Bhatnagar et. al. showed non-reconstruction when and reconstruction when . We tighten this result and show non-reconstruction when and reconstruction when .Comment: Added references, updated notatio
A hard-sphere model on generalized Bethe lattices: Statics
We analyze the phase diagram of a model of hard spheres of chemical radius
one, which is defined over a generalized Bethe lattice containing short loops.
We find a liquid, two different crystalline, a glassy and an unusual
crystalline glassy phase. Special attention is also paid to the close-packing
limit in the glassy phase. All analytical results are cross-checked by
numerical Monte-Carlo simulations.Comment: 24 pages, revised versio
- âŠ