115 research outputs found
Leukocyte Counts and Ratios Are Predictive of Stroke Outcome and Hemorrhagic Complications Independently of Infections.
Background: Ischemic stroke patients show alterations in peripheral leukocyte counts that may result from the sterile inflammation response as well as the occurrence of early infections. We here aimed to determine whether alterations of circulating leukocytes in acute ischemic stroke are associated with long-term functional outcome and hemorrhagic complications, independently of the occurrence of infections. Methods: Blood laboratory values of patients with acute ischemic stroke, presenting within 4.5 h from symptom onset, were collected. Leukocyte subsets were analyzed in relation to 3-month functional outcome, mortality, and parenchymal hemorrhagic transformation (PH). A multivariable logistic regression analysis, considering the occurrence of early post-stroke infections, was performed for each outcome measure. Results: Five-hundred-ten patients were included in the study. Independently of infections, good functional outcome was associated with a lower neutrophil to lymphocyte ratio (NL-R, OR 0.906 [95% CI 0.822-0.998]), a higher lymphocyte count (OR 1.547 [95% CI 1.051-2.277]), a higher eosinophil count (OR 1.027 [95% CI 1.007-1.048]), and a higher eosinophil to leukocyte ratio (EoLeu-R, OR 1.240 [95% CI 1.071-1.436]) at admission. Death within 3 months was associated with higher NL-R (OR 1.103 [95% CI 1.032-1.179]) as well as with lower eosinophil counts (OR 0.909 [95% CI 0.827-0.999]). Patients developing parenchymal hemorrhagic transformation had higher neutrophil counts (OR 1.420 [95% CI 1.197-1.684]) as well as a higher NL-R (OR 1.192 [95% IC 1.088-1.305]). Conclusion: Leukocyte subtype profiles in the acute phase of ischemic stroke represent a predictor of outcome independently of infections. Stroke-evoked sterile inflammation is a pathophysiological relevant mechanism that deserves further investigation
Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke
In light of the limited repertoire of therapeutical options available for the treatment of ischaemic stroke, the identification of novel potential targets is vital; in this respect, the present study demonstrates that the adaptor protein p66Shc holds this potential as an adjunct therapy to thrombolysis. Post-ischaemic silencing of p66Shc protein yielded beneficial effects in a mouse model of I/R brain injury underlying an interesting translational perspective for this target protein. Further, in proof-of-principle clinical experiments using PBMs, we demonstrate that p66Shc gene expression is transiently increased and that its levels correlate to short-term outcome in ischaemic stroke patients. Although these latter experiments are not directly relevant to the experiments performed in mice and in human endothelial cells, they provide novel important information about p66Shc regulation in stroke patients and set the basis for further investigations aimed at assessing the potential for p66Shc to become a novel therapeutic target as an adjunct of thrombolysis for the management of acute ischaemic strok
Current Transition Practice for Primary Immunodeficiencies and Autoinflammatory Diseases in Europe: a RITA-ERN Survey
background due to the absence of curative treatments for inborn errors of immunity (IEI), children born with IEI require long-term follow-up for disease manifestations and related complications that occur over the lifespan. effective transition from pediatric to adult services is known to significantly improve adherence to treatment and long-term outcomes. It is currently not known what transition services are available for young people with IEI in europe. objective to understand the prevalence and practice of transition services in europe for young people with IEI, encompassing both primary immunodeficiencies (PID) and systemic autoinflammatory disorders (AID). methods a survey was generated by the european reference network on immunodeficiency, autoinflammatory, and autoimmune diseases transition working group and electronically circulated, through professional networks, to pediatric centers across europe looking after children with IEI. results seventy-six responses were received from 52 centers, in 45 cities across 17 different countries. all services transitioned patients to adult services, mainly to specialist PID or AID centers, typically transferring up to ten patients to adult care each year. the transition process started at a median age of 16-18 years with transfer to the adult center occurring at a median age of 18-20 years. 75% of PID and 68% of AID centers held at least one joint appointment with pediatric and adult services prior to the transfer of care. approximately 75% of PID and AID services reported having a defined transition process, but few centers reported national disease-specific transition guidelines to refer to. conclusions transition services for children with IEI in europe are available in many countries but lack standardized guidelines to promote best practice
Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
- …