444 research outputs found

    PROBLEMS OF MEASUREMENT OF DENSE PLASMA HEATING IN LASER SHOCK-WAVE COMPRESSION

    Get PDF
    Experimental results of heating measurements of matter carried out in a study of laser-driven shock waves in aluminum (Batani et al. 1997) are discussed. The measured temporal evolution of the "color" temperature of the rear surface of the target is compared with that computed by a numerical code. It has been established that the target preheating can substantially affect optical signal features recorded from the rear side of the target, and consequently influence upon the accuracy of temperature and pressure measurements of the material behind the shock wave front

    Magnetic resonance imaging radiomics in prostate cancer radiology: what is currently known?

    Get PDF
    Diagnostic and treatment approaches in prostate cancer rely on a combination of magnetic resonance imaging and histological data. This study aimed to introduce the basics of the current diagnostic approach in prostate cancer with a focus on texture analysis. Texture analysis evaluates the relationships between image pixels using mathematical methods, which provide additional information. First-order texture analysis of features can have greater clinical reproducibility than higher-order texture features. Textural features that are extracted from diffusion coefficient maps have shown the greatest clinical relevance. Future research should focus on integrating machine learning methods to facilitate the use of texture analysis in clinical practice. The development of automated segmentation methods is required to reduce the likelihood of including normal tissue in the area of interest. Texture analysis allows the noninvasive separation of patients into groups in terms of possible treatment options. Currently, few clinical studies reported on the differential diagnosis of clinically significant prostate cancer, including the Gleason and International Society of Urological Pathology grading. Large prospective studies are required to verify the diagnostic potential of textural features

    Impact of climate change on the ground thermal regime in the lower Lena region, Arctic central Siberia

    Get PDF
    This paper presents the results of 30 years of permafrost thermal monitoring in the Tiksi area in the eastern Russian Arctic. At a stone ridge site, the mean annual temperatures in the upper 30 m of the ground have increased by 1–2.4 C compared to the first years of observations, with trends of C/yr. At the same time, its change was uneven. In the last 20 years, the rate of increase has increased compared with the first decade of observations. At wet tundra sites in the foothill plain, the mean annual temperatures at the top of permafrost have increased by 2.4–2.6 C between 2005 and 2022 at rates of 0.11–0.15 C/yr, and the active layer thicknesses have increased at rates of 0.05–0.41 cm/yr

    The spall strength limit of matter at ultrahigh strain rates induced by laser shock waves

    Get PDF
    New results concerning the process of dynamic fracture of materials (spallation) by laser-induced shock waves are presented. The Nd-glass laser installations SIRIUS and KAMERTON were used for generation of shock waves with pressure up to 1 Mbar in plane Al alloy targets. The wavelengths of laser radiation were 1.06 and 0.53 μm, the target thickness was changed from 180 to 460 μm, and the laser radiation was focused in a spot with a 1-mm diameter on the surface of AMg6M aluminum alloy targets. Experimental results were compared to predictions of a numerical code which employed a real semiempirical wide-range equation of state. Strain rates in experiments were changed from 106 to 5 × 107 s−1. Two regimes of spallation were evidenced: the already known dynamic regime and a new quasi-stationary regime. An ultimate dynamic strength of 80 kbar was measured. Finally, experiments on targets with artificial spall layers were performed showing material hardening due to shock-wave compression

    Vortex rope instabilities in a model of conical draft tube

    Full text link
    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring

    Compact Source of Electron Beam for Facility of Electron-Beam Welding with the Location of the Electron Gun and the Source of High Voltage in a Single Monoblock. Concept and Bench Tests of the Monoblok Prototype

    Get PDF
    Представлен прототип компактного источника электронного пучка для установок электронно-лучевой сварки с расположением электронной пушки и источника высоковольтного напряжения в едином моноблоке. Размещение электронной пушки, источника высоковольтного напряжения, электроники управления пучком и питания накала катода источника электронного пучка для электронно-лучевой сварки в едином корпусе-моноблоке снижает вес и стоимость (за счёт уменьшения количества используемых материалов), объём и занимаемые производственные площади. Это существенно расширяет возможности применения представляемого типа источников электронного пучка в разнообразных областях деятельности человека, в том числе в космических технологиях в открытом пространстве космоса. Цель работы – показать целесообразность концепции компоновки источника электронного пучка в едином корпусе-моноблоке на примере стендовых испытаний прототипа источника-моноблока. Спроектирован и изготовлен прототип источника-моноблока. Проведены его предварительные стендовые испытания с лазерным подогревом катода. Обсуждаются возможные применения. Получен электронный ток источника до 70 мА с энергией 90 кэВ. Данный результат демонстрирует возможность практической реализации нового способа компоновки источника электронного пучкаA prototype of an electron beam compact source for electron-beam welding is presented. The electron gun and a high-voltage source are united in a single monoblock. The placement of the electron gun, the high-voltage source, the beam control electronics and the power supply of the cathode heating of the electron beam source for electron beam welding in a single monoblock housing reduces weight and cost by reducing the amount of materials used, volume and occupied production areas. This significantly expands the possibilities of using the presented type of electron beam sources in various fields of human activity, including space technologies in the open space of space. The purpose of the work is to show the expediency of the concept of arranging the electron beam source in the single monoblock housing as the example of bench tests of the source prototype. The prototype of the monoblock was designed and manufactured. Its preliminary bench tests with laser cathode heating were carried out. Its possible applications are discussed. An electron source current up to 70 mA with an energy of 90 keV was obtained. The result obtained demonstrates the possibility of practical implementation of a new method of arranging an electron beam sourc

    Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    Get PDF
    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile
    corecore