1,916 research outputs found

    Microphase separation in thin block copolymer films: a weak segregation mean-field approach

    Full text link
    In this paper we consider thin films of AB block copolymer melts confined between two parallel plates. The plates are identical and may have a preference for one of the monomer types over the other. The system is characterized by four parameters: the Flory-Huggins chi-parameter, the fraction f of A-monomers in the block copolymer molecules, the film thickness d, and a parameter h quantifying the preference of the plates for the monomers of type A. In certain regions of parameter space, the film will be microphase separated. Various structures have been observed experimentally, each of them characterized by a certain symmetry, orientation, and periodicity. We study the system theoretically using the weak segregation approximation to mean field theory. We restrict our analysis to the region of the parameter space where the film thickness d is close to a small multiple of the natural periodicity. We will present our results in the form of phase diagrams in which the absolute value of the deviation of the film thickness from a multiple of the bulk periodicity is placed along the horizontal axis, and the chi-parameter is placed along the vertical axis; both axes are rescaled with a factor which depends on the A-monomer fraction f. We present a series of such phase diagrams for increasing values of the surface affinity for the A-monomers. We find that if the film thickness is almost commensurate with the bulk periodicity, parallel orientations of the structures are favoured over perpendicular orientations. We also predict that on increasing the surface affinity, the region of stability of the bcc phase shrinks.Comment: 35 pages, 20 figure

    New conserved structural fields for supercooled liquids

    Full text link
    By considering Voronoi tessellations of the configurations of a fluid, we propose two new conserved fields, which provide structural information not fully accounted for by the usual 2-point density field fluctuations (structure factor). One of these fields is scalar and associated to the Voronoi cell volumes, whereas the other one, termed the "geometrical polarisation", is vectorial, related to the very local anisotropy of the configurations. We study the static and dynamical properties of these fields in the supercooled regime of a model glass-forming liquid. We show in particular that the geometrical polarisation is both statically correlated to the force field and contrary to it develops a plateau regime when the temperature is lowered. We attribute this behaviour to the microsopic disorder of the underlying inherent structures (IS) which dictate the dynamics on time scales larger than the true microscopic time, in the strong supercooled regime. In this respect, this work raises the issue of to what extent the inter IS dynamics, intrinsically anisotropic and collective (cf. T.B. Schr{\o}der et al. {\it J. of Chem. Phys.}, {\bf 112}, 9834 (2000)), could be related to their polarisation field.Comment: submitted to EPJE the 09/30/201

    Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments

    Get PDF
    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool

    Topological engineering of interfacial optical Tamm states for highly-sensitive near-singular-phase optical detection

    Get PDF
    We developed planar multilayered photonic-plasmonic structures, which support topologically protected optical states on the interface between metal and dielectric materials, known as optical Tamm states. Coupling of incident light to the Tamm states can result in perfect absorption within one of several narrow frequency bands, which is accompanied by a singular behavior of the phase of electromagnetic field. In the case of near-perfect absorptance, very fast local variation of the phase can still be engineered. In this work, we theoretically and experimentally demonstrate how these drastic phase changes can improve sensitivity of optical sensors. A planar Tamm absorber was fabricated and used to demonstrate remote near-singular-phase temperature sensing with an over an order of magnitude improvement in sensor sensitivity and over two orders of magnitude improvement in the figure of merit over the standard approach of measuring shifts of resonant features in the reflectance spectra of the same absorber. Our experimentally demonstrated phase-to-amplitude detection sensitivity improvement nearly doubles that of state-of-the-art nano-patterned plasmonic singular-phase detectors, with further improvements possible via more precise fabrication. Tamm perfect absorbers form the basis for robust planar sensing platforms with tunable spectral characteristics, which do not rely on low-throughput nano-patterning techniques.Comment: 31 pages; 6 main text figures and 10 supplementary figure

    Bootstrap and the physical values of πN\pi N resonance parameters

    Full text link
    This is the 6th paper in the series developing the formalism to manage the effective scattering theory of strong interactions. Relying on the theoretical scheme suggested in our previous publications we concentrate here on the practical aspect and apply our technique to the elastic pion-nucleon scattering amplitude. We test numerically the pion-nucleon spectrum sum rules that follow from the tree level bootstrap constraints. We show how these constraints can be used to estimate the tensor and vector NNρNN\rho coupling constants. At last, we demonstrate that the tree-level low energy expansion coefficients computed in the framework of our approach show nice agreement with known experimental data. These results allow us to claim that the extended perturbation scheme is quite reasonable from the computational point of view.Comment: 41 pages, 7 figure

    Scanning Probe Microscopy of Elastomers with Mineral Fillers

    Get PDF
    The results of a comprehensive study of the newly synthesized elastomeric composites filled with micro- and nanoscale modified shungite and also taurit, diatomit, and neosyl fillers are presented. The surface structure study of the prepared composites was conducted using scanning probe microscopy. The use of microscopy allowed visualization of the distribution patterns of filler aggregates and agglomerates in composites. The morphology and micro-nanometer size ranges of these aggregates in the synthesized materials are determined. The proposed method of grinding shungite, taurit, diatomit, and neosyl fillers allows significantly increasing the strength characteristics of these composites. The correlation between the reinforcement of the elastic-strength properties and the distribution of the used fillers in the rubber matrix was established

    Impact of climate change on the ground thermal regime in the lower Lena region, Arctic central Siberia

    Get PDF
    This paper presents the results of 30 years of permafrost thermal monitoring in the Tiksi area in the eastern Russian Arctic. At a stone ridge site, the mean annual temperatures in the upper 30 m of the ground have increased by 1–2.4 C compared to the first years of observations, with trends of C/yr. At the same time, its change was uneven. In the last 20 years, the rate of increase has increased compared with the first decade of observations. At wet tundra sites in the foothill plain, the mean annual temperatures at the top of permafrost have increased by 2.4–2.6 C between 2005 and 2022 at rates of 0.11–0.15 C/yr, and the active layer thicknesses have increased at rates of 0.05–0.41 cm/yr

    Topological Darkness of Tamm Plasmons for High-Sensitivity Singular-Phase Optical Detection

    Get PDF
    Multilayered photonic-plasmonic structures exhibit topologically protected zero reflection if they are designed to support Tamm plasmon modes. Sharp phase changes associated with the Tamm mode excitation dramatically improve sensitivity of detectors

    A phononic crystal coupled to a transmission line via an artificial atom

    Full text link
    We study a phononic crystal interacting with an artificial atom { a superconducting quantum system { in the quantum regime. The phononic crystal is made of a long lattice of narrow metallic stripes on a quatz surface. The artificial atom in turn interacts with a transmission line therefore two degrees of freedom of different nature, acoustic and electromagnetic, are coupled with a single quantum object. A scattering spectrum of propagating electromagnetic waves on the artificial atom visualizes acoustic modes of the phononic crystal. We simulate the system and found quasinormal modes of our phononic crystal and their properties. The calculations are consistent with the experimentally found modes, which are fitted to the dispersion branches of the phononic crystal near the first Brillouin zone edge. Our geometry allows to realize effects of quantum acoustics on a simple and compact phononic crystal

    Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory

    Get PDF
    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework
    corecore