1,916 research outputs found
Microphase separation in thin block copolymer films: a weak segregation mean-field approach
In this paper we consider thin films of AB block copolymer melts confined
between two parallel plates. The plates are identical and may have a preference
for one of the monomer types over the other. The system is characterized by
four parameters: the Flory-Huggins chi-parameter, the fraction f of A-monomers
in the block copolymer molecules, the film thickness d, and a parameter h
quantifying the preference of the plates for the monomers of type A. In certain
regions of parameter space, the film will be microphase separated. Various
structures have been observed experimentally, each of them characterized by a
certain symmetry, orientation, and periodicity. We study the system
theoretically using the weak segregation approximation to mean field theory. We
restrict our analysis to the region of the parameter space where the film
thickness d is close to a small multiple of the natural periodicity. We will
present our results in the form of phase diagrams in which the absolute value
of the deviation of the film thickness from a multiple of the bulk periodicity
is placed along the horizontal axis, and the chi-parameter is placed along the
vertical axis; both axes are rescaled with a factor which depends on the
A-monomer fraction f. We present a series of such phase diagrams for increasing
values of the surface affinity for the A-monomers. We find that if the film
thickness is almost commensurate with the bulk periodicity, parallel
orientations of the structures are favoured over perpendicular orientations. We
also predict that on increasing the surface affinity, the region of stability
of the bcc phase shrinks.Comment: 35 pages, 20 figure
New conserved structural fields for supercooled liquids
By considering Voronoi tessellations of the configurations of a fluid, we
propose two new conserved fields, which provide structural information not
fully accounted for by the usual 2-point density field fluctuations (structure
factor). One of these fields is scalar and associated to the Voronoi cell
volumes, whereas the other one, termed the "geometrical polarisation", is
vectorial, related to the very local anisotropy of the configurations. We study
the static and dynamical properties of these fields in the supercooled regime
of a model glass-forming liquid. We show in particular that the geometrical
polarisation is both statically correlated to the force field and contrary to
it develops a plateau regime when the temperature is lowered. We attribute this
behaviour to the microsopic disorder of the underlying inherent structures (IS)
which dictate the dynamics on time scales larger than the true microscopic
time, in the strong supercooled regime. In this respect, this work raises the
issue of to what extent the inter IS dynamics, intrinsically anisotropic and
collective (cf. T.B. Schr{\o}der et al. {\it J. of Chem. Phys.}, {\bf 112},
9834 (2000)), could be related to their polarisation field.Comment: submitted to EPJE the 09/30/201
Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments
An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool
Topological engineering of interfacial optical Tamm states for highly-sensitive near-singular-phase optical detection
We developed planar multilayered photonic-plasmonic structures, which support
topologically protected optical states on the interface between metal and
dielectric materials, known as optical Tamm states. Coupling of incident light
to the Tamm states can result in perfect absorption within one of several
narrow frequency bands, which is accompanied by a singular behavior of the
phase of electromagnetic field. In the case of near-perfect absorptance, very
fast local variation of the phase can still be engineered. In this work, we
theoretically and experimentally demonstrate how these drastic phase changes
can improve sensitivity of optical sensors. A planar Tamm absorber was
fabricated and used to demonstrate remote near-singular-phase temperature
sensing with an over an order of magnitude improvement in sensor sensitivity
and over two orders of magnitude improvement in the figure of merit over the
standard approach of measuring shifts of resonant features in the reflectance
spectra of the same absorber. Our experimentally demonstrated
phase-to-amplitude detection sensitivity improvement nearly doubles that of
state-of-the-art nano-patterned plasmonic singular-phase detectors, with
further improvements possible via more precise fabrication. Tamm perfect
absorbers form the basis for robust planar sensing platforms with tunable
spectral characteristics, which do not rely on low-throughput nano-patterning
techniques.Comment: 31 pages; 6 main text figures and 10 supplementary figure
Bootstrap and the physical values of resonance parameters
This is the 6th paper in the series developing the formalism to manage the
effective scattering theory of strong interactions. Relying on the theoretical
scheme suggested in our previous publications we concentrate here on the
practical aspect and apply our technique to the elastic pion-nucleon scattering
amplitude. We test numerically the pion-nucleon spectrum sum rules that follow
from the tree level bootstrap constraints. We show how these constraints can be
used to estimate the tensor and vector coupling constants. At last, we
demonstrate that the tree-level low energy expansion coefficients computed in
the framework of our approach show nice agreement with known experimental data.
These results allow us to claim that the extended perturbation scheme is quite
reasonable from the computational point of view.Comment: 41 pages, 7 figure
Scanning Probe Microscopy of Elastomers with Mineral Fillers
The results of a comprehensive study of the newly synthesized elastomeric composites filled with micro- and nanoscale modified shungite and also taurit, diatomit, and neosyl fillers are presented. The surface structure study of the prepared composites was conducted using scanning probe microscopy. The use of microscopy allowed visualization of the distribution patterns of filler aggregates and agglomerates in composites. The morphology and micro-nanometer size ranges of these aggregates in the synthesized materials are determined. The proposed method of grinding shungite, taurit, diatomit, and neosyl fillers allows significantly increasing the strength characteristics of these composites. The correlation between the reinforcement of the elastic-strength properties and the distribution of the used fillers in the rubber matrix was established
Impact of climate change on the ground thermal regime in the lower Lena region, Arctic central Siberia
This paper presents the results of 30 years of permafrost thermal monitoring in the Tiksi area in the eastern Russian Arctic. At a stone ridge site, the mean annual temperatures in the upper 30 m of the ground have increased by 1–2.4 C compared to the first years of observations, with trends of C/yr. At the same time, its change was uneven. In the last 20 years, the rate of increase has increased compared with the first decade of observations. At wet tundra sites in the foothill plain, the mean annual temperatures at the top of permafrost have increased by 2.4–2.6 C between 2005 and 2022 at rates of 0.11–0.15 C/yr, and the active layer thicknesses have increased at rates of 0.05–0.41 cm/yr
Topological Darkness of Tamm Plasmons for High-Sensitivity Singular-Phase Optical Detection
Multilayered photonic-plasmonic structures exhibit topologically protected zero reflection if they are designed to support Tamm plasmon modes. Sharp phase changes associated with the Tamm mode excitation dramatically improve sensitivity of detectors
A phononic crystal coupled to a transmission line via an artificial atom
We study a phononic crystal interacting with an artificial atom { a
superconducting quantum system { in the quantum regime. The phononic crystal is
made of a long lattice of narrow metallic stripes on a quatz surface. The
artificial atom in turn interacts with a transmission line therefore two
degrees of freedom of different nature, acoustic and electromagnetic, are
coupled with a single quantum object. A scattering spectrum of propagating
electromagnetic waves on the artificial atom visualizes acoustic modes of the
phononic crystal. We simulate the system and found quasinormal modes of our
phononic crystal and their properties. The calculations are consistent with the
experimentally found modes, which are fitted to the dispersion branches of the
phononic crystal near the first Brillouin zone edge. Our geometry allows to
realize effects of quantum acoustics on a simple and compact phononic crystal
Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory
For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework
- …