42 research outputs found

    Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome.

    No full text

    tRNA binding sites on eukaryotic 80S ribosomes.

    No full text

    Number of tRNA binding sites on 80 S ribosomes and their subunits.

    Get PDF
    AbstractThe ability of rabbit liver ribosomes and their subunits to form complexes with different forms of tRNAPhe (aminoacyl-, peptidyl- and deacylated) was studied using the nitrocellulose membrane filtration technique. The 80 S ribosomes were shown to have two binding sites for aminoacyl- or peptidyl-tRNA and three binding sites for deacylated tRNA. The number of tRNA binding sites on 80 S ribosomes or 40 S subunits is constant at different Mg2+ concentrations (5–20 mM). Double reciprocal or Scatchard plot analysis indicates that the binding of Ac-Phe-tRNAPhe to the ribosomal sites is a cooperative process. The third site on the 80 S ribosome is formed by its 60 S subunit, which was shown to have one codon-independent binding site specific for deacylated tRNA

    The "allosteric three-site model" of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli.

    No full text
    For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative "allosteric three-site model" [Nierhaus, K.H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg2+ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with aminoacyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome

    Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA.

    No full text
    30S subunits were isolated capable to bind simultaneously two molecules of Phe-tRNAPhe (or N-Acetyl-Phe-tRNAPhe), both poly(U) dependent. The site with higher affinity to tRNA was identified as P site. tRNA binding to this site was not inhibited by low concentrations of tetracycline (2 x 10(-5)M) and, on the other hand, N-Acetyl-Phe-tRNAPhe, initially prebound to the 30S.poly(U) complex in the presence of tetracycline, reacted with puromycin quantitatively after addition of 50S subunits. The site with lower affinity to tRNA revealed features of the A site: tetracycline fully inhibited the binding of both Phe-tRNAPhe and N-Acetyl-Phe-tRNAPhe. Binding of two molecules of Phe-tRNAPhe to the 30S.poly(U) complex followed by the addition of 50S subunits resulted in the formation of (Phe)2-tRNAPhe in 75-90% of the reassociated 70S ribosomes. These results prove that isolated 30S subunits contain two physically distinct centers for the binding of specific aminoacyl- (or peptidyl-) tRNA. Addition of 50S subunits results in the formation of whole 70S ribosomes with usual donor and acceptor sites
    corecore