194 research outputs found

    Variable Interstellar Absorption toward the Halo Star HD 219188 - Implications for Small-Scale Interstellar Structure

    Get PDF
    Within the last 10 years, strong, narrow Na I absorption has appeared at v_sun ~ -38 km/s toward the halo star HD 219188; that absorption has continued to strengthen, by a factor 2-3, over the past three years. The line of sight appears to be moving into/through a relatively cold, quiescent intermediate velocity (IV) cloud, due to the 13 mas/yr proper motion of HD 219188; the variations in Na I probe length scales of 2-38 AU/yr. UV spectra obtained with the HST GHRS in 1994-1995 suggest N(H_tot) ~ 4.8 X 10^{17} cm^{-2}, ``halo cloud'' depletions, n_H ~ 25 cm^{-3}, and n_e ~ 0.85-6.2 cm^{-3} (if T ~ 100 K) for the portion of the IV cloud sampled at that time. The relatively high fractional ionization, n_e/n_H >~ 0.034, implies that hydrogen must be partially ionized. The N(Na I)/N(H_tot) ratio is very high; in this case, the variations in Na I do not imply large local pressures or densities.Comment: 12 pages; aastex; to appear in ApJ

    Absorption Line Studies in the Halo

    Full text link
    Significant progress has been made over the last few years to explore the gaseous halo of the Milky Way by way of absorption spectroscopy. I review recent results on absorption line studies in the halo using various instruments, such as the Far Ultraviolet Spectroscopic Explorer, the Space Telescope Imaging Spectrograph, and others. The new studies imply that the infall of low-metallicity gas, the interaction with the Magellanic Clouds, and the Galactic Fountain are responsible for the phenomenon of the intermediate- and high-velocity clouds in the halo. New measurements of highly-ionized gas in the vicinity of the Milky Way indicate that these clouds are embedded in a corona of hot gas that extends deep into the intergalactic space.Comment: 7 pages, 1 figure; Invited review at the conference "How does the Galaxy work ?", Granada/Spain, June 200

    The Role of a Hot Gas Environment on the Evolution of Galaxies

    Full text link
    Most spiral galaxies are found in galaxy groups with low velocity dispersions; most E/S0 galaxies are found in galaxy groups with relatively high velocity dispersions. The mass of the hot gas we can observe in the E/S0 groups via their thermal X-ray emission is, on average, as much as the baryonic mass of the galaxies in these groups. By comparison, galaxy clusters have as much or more hot gas than stellar mass. Hot gas in S-rich groups, however, is of low enough temperature for its X-ray emission to suffer heavy absorption due to Galactic HI and related observational effects, and hence is hard to detect. We postulate that such lower temperature hot gas does exist in low velocity dispersion, S-rich groups, and explore the consequences of this assumption. For a wide range of metallicity and density, hot gas in S-rich groups can cool in far less than a Hubble time. If such gas exists and can cool, especially when interacting with HI in existing galaxies, then it can help link together a number of disparate observations, both Galactic and extragalactic, that are otherwise difficult to understand.Comment: 16 pages with one figure. ApJ Letters, in pres

    The Influence of Stellar Wind Variability on Measurements of Interstellar O VI Along Sightlines to Early-Type Stars

    Full text link
    A primary goal of the FUSE mission is to understand the origin of the O VI ion in the interstellar medium of the Galaxy and the Magellanic Clouds. Along sightlines to OB-type stars, these interstellar components are usually blended with O VI stellar wind profiles, which frequently vary in shape. In order to assess the effects of this time-dependent blending on measurements of the interstellar O VI lines, we have undertaken a mini-survey of repeated observations toward OB-type stars in the Galaxy and the Large Magellanic Cloud. These sparse time series, which consist of 2-3 observations separated by intervals ranging from a few days to several months, show that wind variability occurs commonly in O VI (about 60% of a sample of 50 stars), as indeed it does in other resonance lines. However, in the interstellar O VI λ\lambda1032 region, the O VI λ\lambda1038 wind varies only in \sim30% of the cases. By examining cases exhibiting large amplitude variations, we conclude that stellar-wind variability {\em generally} introduces negligible uncertainty for single interstellar O VI components along Galactic lines of sight, but can result in substantial errors in measurements of broader components or blends of components like those typically observed toward stars in the Large Magellanic Cloud. Due to possible contamination by discrete absorption components in the stellar O VI line, stars with terminal velocities greater than or equal to the doublet separation (1654 km/s) should be treated with care.Comment: Accepted for publication in the Astrophysical Journal Lette

    FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705

    Get PDF
    We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy NGC 1705. These data allow us for the first time to probe the coronal-phase gas (T = 10E5 to 10E6 K) that may dominate the radiative cooling of the supernova-heated ISM and thereby determine the dynamical evolution of starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80 km/s) OVI absorption-line arising in the previously-known galactic outflow. The properties of the OVI absorption are inconsistent with the standard superbubble model in which this gas arises in a conductive interface inside the outer shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing as hot gas rushes out through fissures in the fragmenting shell of cool gas. As the coronal gas cools radiatively, it can naturally produce the observed OVI column density and outflow speed. The OVI data show that the cooling rate in the coronal-phase gas is less than about 10% of the supernova heating rate. Since the X-ray luminosity from hotter gas is even smaller, we conclude that radiative losses are insignificant. The outflow should be able to vent its metals and kinetic energy out of the galaxy. This process has potentially important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press

    On the Escape of Ionizing Radiation from Starbursts

    Full text link
    Far-ultraviolet spectra obtained with FUSEFUSE show that the strong CIIλCII\lambda1036 interstellar absorption-line is essentially black in five of the UV-brightest local starburst galaxies. Since the opacity of the neutral ISM below the Lyman-edge will be significantly larger than in the CIICII line, these data provide strong constraints on the escape of ionizing radiation from these starbursts. Interpreted as a a uniform absorbing slab, the implied optical depth at the Lyman edge is huge (τ0102\tau_0 \geq 10^2). Alternatively, the areal covering factor of opaque material is typically \geq 94%. Thus, the fraction of ionizing stellar photons that escape the ISM of each galaxy is small: our conservative estimates typically yield fesc6f_{esc} \leq 6%. Inclusion of extinction due to dust will further decrease fescf_{esc}. An analogous analysis of the rest-UV spectrum of the star-forming galaxy MS1512CB58MS 1512-CB58 at zz =2.7 leads to similar constraints on fescf_{esc}. These new results agree with the constraints provided by direct observations below the Lyman edge in a few other local starbursts. However, they differ from the recently reported properties of star-forming galaxies at zz \geq 3. We assess the idea that the strong galactic winds seen in many powerful starbursts clear channels through their neutral ISM. We show empirically that such outflows may be a necessary - but not sufficient - part of the process for creating a relatively porous ISM. We note that observations will soon document the cosmic evolution in the contribution of star-forming galaxies to the metagalactic ionizing background, with important implications for the evolution of the IGM.Comment: 17 pages; ApJ, in pres

    XMM-{\em Newton} and FUSE Tentative Evidence for a WHIM filament along the Line of Sight to PKS~0558-504

    Full text link
    We present a possible OVIII X-ray absorption line at z=0.117±0.001z=0.117 \pm 0.001 which, if confirmed, will be the first one associated with a broad HI Lyβ\beta (BLB: FWHM=16030+50160^{+50}_{-30} km s1^{-1}) absorber. The absorber lies along the line of sight to the nearby (z=0.1372z=0.1372) Seyfert 1 galaxy PKS~0558-504, consistent with being a WHIM filament. The X-ray absorber is marginally detected in two independent XMM-Newton spectra of PKS~0558-504, a long 600\sim 600 ks Guest-Observer observation and a shorter, 300\sim 300 ks total, calibration observation, with a combined single line statistical significance of 2.8σ\sigma (2.7σ\sigma and 1.2σ\sigma in the two spectra, respectively). When fitted with our self-consistent hybrid-photoionization WHIM models, the combined XMM-{\em Newton} spectrum is consistent with the presence of OVIII Kα\alpha at z=(0.117±0.001)z=(0.117 \pm 0.001). This model gives best fitting temperature and equivalent H column density of the absorber of logT=6.560.17+0.19T=6.56_{-0.17}^{+0.19} K, and logNH=(21.5±0.3)(Z/Z0.01)1_H=(21.5 \pm 0.3) (Z/Z_{0.01\odot})^{-1} cm2^{-2}. The statistical sigificance of this single X-ray detection is increased by the detection of broad and complex HI Lyβ\beta absorption in archival FUSE spectra of PKS~0558-504, at redshifts z=0.1183±0.0001z=0.1183 \pm 0.0001 consistent with the best-fitting redshift of the X-ray absorber. The single line statistical significance of this line is 4.1σ\sigma (3.7σ\sigma if systematics are considered), and thus the combined (HI+OVIII) statistical significance of the detection is of 5.0σ\sigma. The detection of both metal and H lines at a consistent redshift, in this hot absorbing system, allows us to speculate on its metallicity. By associating the bulk of the X-ray absorber with the BLB line detected in the FUSE spectrum at zBLB=0.1183±0.0001z_{BLB}=0.1183 \pm 0.0001, we obtain a metallicity of 1-4\% Solar.Comment: 37 pages, 12 figures, 3 Tables. Accepted for publication by the ApJ

    Discovery of Enhanced Germanium Abundances in Planetary Nebulae with FUSE

    Full text link
    We report the discovery of Ge III λ\lambda1088.46 in the planetary nebulae (PNe) SwSt 1, BD+30o^{\rm o}3639, NGC 3132, and IC 4593, observed with the Far Ultraviolet Spectroscopic Explorer. This is the first astronomical detection of this line and the first measurement of Ge (Z = 32) in PNe. We estimate Ge abundances using S and Fe as reference elements, for a range of assumptions about gas-phase depletions. The results indicate that Ge, which is synthesized in the initial steps of the s-process and therefore can be self-enriched in PNe, is enhanced by factors of > 3-10. The strongest evidence for enrichment is seen for PNe with Wolf-Rayet central stars, which are likely to contain heavily processed material.Comment: 11 pages, 1 figure, accepted for publication in ApJ Letter

    New HST Observations of the Halo Gas of NGC 3067: Limits on the Extragalactic Ionizing Background at Low Redshift and the Lyman Continuum Escape Fraction

    Get PDF
    We present UV spectroscopy from HST/GHRS and reanalyze existing H_alpha images of the quasar/galaxy pair 3C 232/NGC 3067 and of the halo gas associated with NGC 3067. The spectra permit measurement of, or limits on, the column densities of Fe I, Fe II, Mg I, and Mg II in the absorbing cloud. Two distinct models of the extragalactic radiation field are considered: (1) the ionizing spectrum is dominated by a power-law extragalactic continuum, and (2) the power-law spectrum contains a Lyman break, implying enhanced flux longward of 912 A relative to the hydrogen-ionizing flux. The H_alpha images constrain the escape fraction of Lyman continuum photons from the galaxy to f_esc <= 0.02. With the assumption that the cloud is shielded from all galactic contributions, we can constrain the intensity and shape of the extragalactic continuum. For an AGN-dominated power-law extragalactic spectrum, we derive a limit on the extragalactic ionizing flux Phi_ion >= 2600 photons cm^-2 s^-1, or I_0 >= 10^-23 erg cm^-2 s^-1 Hz^-1 sr^-1 for an ionizing spectrum with power-law index of 1.8 and a cloud of constant density. When combined with previous upper limits from the absence of H_alpha recombination emission from intergalactic clouds, our observations require 2600 <= Phi_ion <= 10000 photons cm^-2 s^-1. We show that if galactic contributions to the incident radiation are important, it is difficult to constrain Phi_ion. These results demonstrate that galactic halo opacities and their wavelength dependence are crucial to understanding the abundance of low-ionization metals in the IGM.Comment: 25 Pages LaTex, 8 PostScript Figures, accepted for publication in AJ, Nov. 99 issu
    corecore