23 research outputs found

    40 Years of CSF Toxicity Studies in ALS: What Have We Learnt About ALS Pathophysiology?

    Get PDF
    AM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd., funded by the MRC, Alzheimer’s Society and Alzheimer’s Research UK.Peer reviewedPublisher PD

    Dysregulation in Subcellular Localization of Myelin Basic Protein mRNA Does Not Result in Altered Myelination in Amyotrophic Lateral Sclerosis

    Get PDF
    Pathological hallmarks of amyotrophic lateral sclerosis (ALS), including protein misfolding, are well established in oligodendrocytes. More recently, an RNA trafficking deficit of key myelin proteins has been suggested in oligodendrocytes in ALS but the extent to which this affects myelination and the relative contribution of this to disease pathogenesis is unclear. ALS autopsy research findings showing demyelination contrasts with the routine clinical-pathological workup of ALS cases where it is rare to see white matter abnormalities other than simple Wallerian degeneration secondary to widespread neuronal loss. To begin to address this apparent variance, we undertook a comprehensive evaluation of myelination at an RNA, protein and structural level using human pathological material from sporadic ALS patients, genetic ALS patients (harboring C9orf72 mutation) and age- and sex-matched non-neurological controls. We performed (i) quantitative spatial profiling of the mRNA transcript encoding myelin basic protein (MBP), (ii) quantification of MBP protein and (iii) the first quantitative structural assessment of myelination in ALS post-mortem specimens by electron microscopy. We show no differences in MBP protein levels or ultrastructural myelination, despite a significant dysregulation in the subcellular trafficking of MBP mRNA in ALS patients compared to controls. We therefore confirm that whilst there are cell autonomous mRNA trafficking deficits affecting oligodendrocytes in ALS, this has no effect on myelin structure

    Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis

    Get PDF
    ARM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. JMG is funded by a starter grant for clinical lecturers from the Academy of Medical Sciences. CS is supported by a Medical Research Council grant (MR/L016400/1). NMM was funded by a Wellcome Trust New Investigator Award (100981/Z/13/Z). RNC and NMM are funded by a Diabetes UK grant (17/0005697). The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd, funded by the MRC, Alzheimer's Society and Alzheimer's Research UK. SC also acknowledges funding from the ARRNC, My Name’5 Doddie Foundation, and an MRC Dementias Platform UK Stem Cell Partnership grant (MR/N013255/1). BTS is a Rowling-DRI Fellow.Peer reviewedPublisher PD

    iPSC-derived myelinoids to study myelin biology of humans

    Get PDF
    Myelination is essential for central nervous system (CNS) formation, health, and function. Emerging evidence of oligodendrocyte heterogeneity in health and disease and divergent CNS gene expression profiles between mice and humans supports the development of experimentally tractable human myelination systems. Here, we developed human iPSC-derived myelinating organoids (“myelinoids”) and quantitative tools to study myelination from oligodendrogenesis through to compact myelin formation and myelinated axon organization. Using patient-derived cells, we modeled a monogenetic disease of myelinated axons (Nfasc155 deficiency), recapitulating impaired paranodal axo-glial junction formation. We also validated the use of myelinoids for pharmacological assessment of myelination—both at the level of individual oligodendrocytes and globally across whole myelinoids—and demonstrated reduced myelination in response to suppressed synaptic vesicle release. Our study provides a platform to investigate human myelin development, disease, and adaptive myelination

    PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD.

    Get PDF
    ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset

    Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian 4 Birth Cohort 1936

    Get PDF
    Cognitive decline is among the most feared aspects of ageing. We have generated induced pluripotent stem cells (iPSCs) from 24 people from the Lothian Birth Cohort 1936, whose cognitive ability was tested in childhood and in older age. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating oriP/EBNA1 backbone plasmids expressing six iPSC reprogramming factors (OCT3/4 (POU5F1), SOX2, KLF4, L-Myc, shp53, Lin28, SV40LT). All lines demonstrated STR matched karyotype and pluripotency was validated by multiple methods. These iPSC lines are a valuable resource to study molecular mechanisms underlying individual differences in cognitive ageing and resilience to age-related neurodegenerative diseases

    C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility

    Get PDF
    A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.</p
    corecore