4 research outputs found
Vigorous-intensity exercise as a modulator of cardiac adipose tissue in women with obesity: A cross-sectional and randomized pilot study
Cardiac adipose tissue (CAT) has become an important target for the reduction of disease risk. Supervised exercise programs have shown potential to significantly reduce CAT; however, the impact of different exercise modalities is not clear, and the relationships between CAT, physical activity (PA) levels and fitness (PFit) remain unknown. Therefore, the purpose of this study was to analyze the relationships between CAT, PA and PFit, and to explore the effects of different exercise modalities in a group of women with obesity. A total of 26 women (age: 23.41 ± 5.78 years-old) were enrolled in the cross-sectional study. PA, cardiorespiratory fitness, muscular strength, body composition and CAT were evaluated. The pilot intervention included 16 women randomized to a control (CON, n=5), high intensity interval training (HIIT, n = 5) and high-intensity circuit training (HICT, n=6) groups. Statistical analysis showed negative correlations between CAT and vigorous PA (VPA)
Vigorous-intensity exercise as a modulator of cardiac adipose tissue in women with obesity: a cross-sectional and randomized pilot study
Cardiac adipose tissue (CAT) has become an important target for the reduction of disease risk. Supervised exercise programs have shown potential to "significantly" reduce CAT; however, the impact of different exercise modalities is not clear, and the relationships between CAT, physical activity (PA) levels and fitness (PFit) remain unknown. Therefore, the purpose of this study was to analyze the relationships between CAT, PA and PFit, and to explore the effects of different exercise modalities in a group of women with obesity. A total of 26 women (age: 23.41 ± 5.78 years-old) were enrolled in the cross-sectional study. PA, cardiorespiratory fitness, muscular strength, body composition and CAT were evaluated. The pilot intervention included 16 women randomized to a control (CON, n=5), high intensity interval training (HIIT, n = 5) and high-intensity circuit training (HICT, n=6) groups. Statistical analysis showed negative correlations between CAT and vigorous PA (VPA) (rs=-0.41, p=0.037); and between percent body fat (%BF), fat mass (FM), and all PA levels (rs=-0.41– -0.68, p<0.05); while muscle mass was positively associated with moderate-to-vigorous PA, and upper-body lean mass with all PA levels (rs =0.40–0.53, p<0.05). The HICT intervention showed significant improvements (p<0.05) in %BF, FM, fat free mass, and whole-body and lower extremities lean mass and strength after three weeks; however, only leg strength and upper extremities’ FM improved significantly compared to CON and HICT. In conclusion, although all types of PA showed a positive influence on body fat content, only VPA significantly impacted on CAT volume. Moreover, three weeks of HICT induced positive changes in PFit in women with obesity. Further research is needed to explore VPA levels and high-intensity exercise interventions for short- and long-term CAT management
AI-driven techniques for controlling the metal melting production: a review, processes, enabling technologies, solutions, and research challenges
Artificial Intelligence has left no stone unturned, and mechanical engineering is one of its biggest consumers. Such technological advancements in metal melting can help in process simplification, hazard reduction, human involvement reduction & lesser process time. Implementing the AI models in the melting technology will ultimately help various industries, i.e., Foundry, Architecture, Jewelry Industry, etc. This review extensively sheds light on Artificial Intelligence models implemented in metal melting processes or the metal melting aspect, alongside explaining additive manufacturing as a competitor to the current melting processes and its advances in metal melting and AI implementations