10 research outputs found

    Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2

    Get PDF
    To investigate roles in intestinal inflammation for the 2 cyclooxygenase (COX) isoforms, we determined susceptibility to spontaneous and induced acute colitis in mice lacking either the COX-1 or COX-2 isoform. We treated wild-type, COX-1–/–, COX-2–/–, and heterozygous mice with dextran sodium sulfate (DSS) to provoke acute colonic inflammation, and we quantified tissue damage, prostaglandin (PG) E2, and interleukin-1β. No spontaneous gastrointestinal inflammation was detected in mice homozygous for either mutation, despite almost undetectable basal intestinal PGE2 production in COX-1–/– mice. Both COX-1–/– and COX-2–/– mice showed increased susceptibility to a low-dose of DSS that caused mild colonic epithelial injury in wild-type mice. COX-2–/– mice were more susceptible than COX-1–/– mice, and selective pharmacologic blockade of COX-2 potentiated injury in COX-1–/– mice. At a high dose, DSS treatment was fatal to 50% of the animals in each mutant group, but all wild-type mice survived. DSS treatment increased PGE2 intestinal secretion in all groups except COX-2–/– mice. These results demonstrate that COX-1 and COX-2 share a crucial role in the defense of the intestinal mucosa (with inducible COX-2 being perhaps more active during inflammation) and that neither isoform is essential in maintaining mucosal homeostasis in the absence of injurious stimuli

    Comparative whole transcriptome analysis of gene expression in three canine soft tissue sarcoma types.

    No full text
    Soft tissue sarcomas are pleiotropic tumors of mesenchymal cell origin. These tumors are rare in humans but common in veterinary practice, where they comprise up to 15% of canine skin and subcutaneous cancers. Because they present similar morphologies, primary sites, and growth characteristics, they are treated similarly, generally by surgical resection followed by radiation therapy. Previous studies have examined a variety of genetic changes as potential drivers of tumorigenesis and progression in soft tissue sarcomas as well as their use as markers for soft tissue sarcoma subtypes. However, few studies employing next generation sequencing approaches have been published. Here, we have examined gene expression patterns in canine soft tissue sarcomas using RNA-seq analysis of samples obtained from archived formalin-fixed and paraffin-embedded tumors. We provide a computational framework for using resulting data to categorize tumors, perform cross species comparisons and identify genetic changes associated with tumorigenesis. Functional overrepresentation analysis of differentially expressed genes further implicate both common and tumor-type specific transcription factors as potential mediators of tumorigenesis and aggression. Implications for tumor-type specific therapies are discussed. Our results illustrate the potential utility of this approach for the discovery of new therapeutic approaches to the management of canine soft tissue sarcomas and support the view that both common and tumor-type specific mechanisms drive the development of these tumors

    Interim report on the effective intraperitoneal therapy of insulin-dependent diabetes mellitus in pet dogs using "Neo-Islets," aggregates of adipose stem and pancreatic islet cells (INAD 012-776).

    No full text
    We previously reported that allogeneic, intraperitoneally administered "Neo-Islets," composed of cultured pancreatic islet cells co-aggregated with high numbers of immunoprotective and cytoprotective Adipose-derived Stem Cells, reestablished, through omental engraftment, redifferentiation and splenic and omental up-regulation of regulatory T-cells, normoglycemia in autoimmune Type-1 Diabetic Non-Obese Diabetic (NOD) mice without the use of immunosuppressive agents or encapsulation devices. Based on these observations, we are currently testing this Neo-Islet technology in an FDA guided pilot study (INAD 012-776) in insulin-dependent, spontaneously diabetic pet dogs by ultrasound-guided, intraperitoneal administration of 2x10e5 Neo-Islets/kilogram body weight to metabolically controlled (blood glucose, triglycerides, thyroid and adrenal functions) and sedated animals. We report here interim observations on the first 4 canine Neo-Islet-treated, insulin-dependent pet dogs that are now in the early to intermediate-term follow-up phase of the planned 3 year study (> 6 months post treatment). Current results from this translational study indicate that in dogs, Neo-Islets appear to engraft, redifferentiate and physiologically produce insulin, and are rejected by neither auto- nor allo-immune responses, as evidenced by (a) an absent IgG response to the allogeneic cells contained in the administered Neo-Islets, and (b) progressively improved glycemic control that achieves up to a 50% reduction in daily insulin needs paralleled by a statistically significant decrease in serum glucose concentrations. This is accomplished without the use of anti-rejection drugs or encapsulation devices. No adverse or serious adverse events related to the Neo-Islet administration have been observed to date. We conclude that this minimally invasive therapy has significant translational relevance to veterinary and clinical Type 1 diabetes mellitus by achieving complete and at this point partial glycemic control in two species, i.e., diabetic mice and dogs, respectively

    Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2

    Get PDF
    To investigate roles in intestinal inflammation for the 2 cyclooxygenase (COX) isoforms, we determined susceptibility to spontaneous and induced acute colitis in mice lacking either the COX-1 or COX-2 isoform. We treated wild-type, COX-1 –/– , COX-2 –/– , and heterozygous mice with dextran sodium sulfate (DSS) to provoke acute colonic inflammation, and we quantified tissue damage, prostaglandin (PG) E 2 , and interleukin-1β. No spontaneous gastrointestinal inflammation was detected in mice homozygous for either mutation, despite almost undetectable basal intestinal PGE 2 production in COX-1 –/– mice. Both COX-1 –/– and COX-2 –/– mice showed increased susceptibility to a low-dose of DSS that caused mild colonic epithelial injury in wild-type mice. COX-2 –/– mice were more susceptible than COX-1 –/– mice, and selective pharmacologic blockade of COX-2 potentiated injury in COX-1 –/– mice. At a high dose, DSS treatment was fatal to 50% of the animals in each mutant group, but all wild-type mice survived. DSS treatment increased PGE 2 intestinal secretion in all groups except COX-2 –/– mice. These results demonstrate that COX-1 and COX-2 share a crucial role in the defense of the intestinal mucosa (with inducible COX-2 being perhaps more active during inflammation) and that neither isoform is essential in maintaining mucosal homeostasis in the absence of injurious stimuli
    corecore