7 research outputs found

    Mitotic Spindle Proteomics in Chinese Hamster Ovary Cells

    Get PDF
    Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT) analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO) analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells

    Operation of the Multigap Resistive Plate Chamber using a gas mixture free of flammable components

    No full text
    We have investigated the operation of the multigap resistive plate chamber (MRPC) for the ALICE-TOF system with a gas mixture free of flammable components. Two different gas mixtures, with and without iso-C4H10 have been used to measure the performance of the MRPC. The efficiency, time resolution, total charge, and the fast to total charge ratio have been found to be comparabl

    Latest results on the performance of the multigap resistive plate chamber used for the ALICE TOF

    No full text
    For the identification of particles in the momentum range 0.5-2.5GeV/c, the ALICE experiment uses a Time Of Flight array consisting of Multigap Resistive Plate Chambers (MRPC) in the form of long strips. The design of the detector elements is as follows : double stack MRPCs with glass resistive plates and 5 gas gaps of 250 mum per stack. The latest results on the performance of these MRPCs are presented. Typical values of time resolution a are better than 50 ps, with an efficiency of 99.9% and a long, more than 1.5 kV, streamer-free plateau

    Space charge limited avalanche growth in multigap resistive plate chambers

    No full text
    The ALICE TOF array will be built using the Multigap Resistive Plate Chamber(MRPC) configured as a double stack. Each stack contains 5 gas gaps with width of 250 mu m. There has been an intense R&D effort to optimise this new detector to withstand the problems connected with the high level of radiation at the LHC. One clear outcome of the R&D is that the growth of the gas avalanche is strongly affected by space charge. The effect of the space charge is a decrease in the rate of change in gain with electric field; this allows more stable operation of this detector. We have measured the gain as a function of the electric field and also measured the ratio of the fast charge to the total charge produced in the gas gap. It is well established that RPCs built with 250 mu m gas gap have a much superior performance than 2 mm gaps; we discuss and compare the performance of 250 mu m gap MRPCs with 2 mm gap RPCs to show the importance of space-charge limitation of avalanche growth

    Clinical evaluation of systemic and local immune responses in cancer: time for integration

    No full text
    corecore