39 research outputs found
Temperature induced crossover between 0 and pi states in S/F/S junctions
Ferromagnetic Josephson junctions can show at equilibrium a pi phase difference between the superconducting electrodes. We explain this pi state in an original way by a modified spectrum of Andreev bound states shifted by the exchange energy. A simplified expression for the spectral supercurrent density is calculated and the non-monotonic temperature dependence of the critical current is discussed. This model accounts for the cancellation of the critical current with temperature observed in a small range of barrier thickness in our Nb/Cu52Ni48/Nb junctions. This cancellation corresponds to an inversion of the supercurrent and to a ground state crossover from a 0 state to a pi state. This transition is caused both by the thermal distribution of quasi-particles and by the temperature dependence of the exchange energy. The experimental curves are well reproduced by our theoretical expression except for the very small amplitude of the supercurrent attributed to a large spin-flip scattering
Electron qubits surfing on acoustic waves: review of recent progress
The displacement of a single electron enables exciting avenues for
nanotechnology with vast application potential in quantum metrology, quantum
communication and quantum computation. Surface acoustic waves (SAW) have proven
itself as a surprisingly useful solution to perform this task over large
distance with outstanding precision and reliability. Over the last decade,
important milestones have been achieved bringing SAW-driven single-electron
transport from first proof-of-principle demonstrations to accurate,
highly-controlled implementations, such as coherent spin transport,
charge-to-photon conversion, or antibunching of charge states. Beyond the
well-established piezoelectric gallium-arsenide platform, first realisations of
acousto-electronic transport have also been carried out on the surface of
liquid helium. In this review article, we aim to keep track of this remarkable
progress by explaining these recent achievements from basic principles, with an
outlook on follow-up experiments and near-term applications
On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations
This paper presents a brief review of scanning-gate microscopy applied to the
imaging of electron transport in buried semiconductor quantum structures. After
an introduction to the technique and to some of its practical issues, we
summarise a selection of its successful achievements found in the literature,
including our own research. The latter focuses on the imaging of GaInAs-based
quantum rings both in the low magnetic field Aharonov-Bohm regime and in the
high-field quantum Hall regime. Based on our own experience, we then discuss in
detail some of the limitations of scanning-gate microscopy. These include
possible tip induced artefacts, effects of a large bias applied to the scanning
tip, as well as consequences of unwanted charge traps on the conductance maps.
We emphasize how special care must be paid in interpreting these scanning-gate
images.Comment: Special issue on (nano)characterization of semiconductor materials
and structure
A new transport phenomenon in nanostructures: A mesoscopic analog of the Braess paradox encountered in road networks
The Braess paradox, known for traffic and other classical networks, lies in
the fact that adding a new route to a congested network in an attempt to
relieve congestion can counter-intuitively degrade the overall network
performance. Recently, we have extended the concept of Braess paradox to
semiconductor mesoscopic networks, whose transport properties are governed by
quantum physics. In this paper, we demonstrate theoretically that, alike in
classical systems, congestion plays a key role in the occurrence of a Braess
paradox in mesoscopic networks.Comment: Invited talk at Int. Conf. on Superlattices, Nanostructures, and
Nanodevices (ICSNN2012), Dresden, July 2012; submitted to Nanoscale Res. Let
Scanning-gate microscopy of semiconductor nanostructures: an overview
This paper presents an overview of scanning-gate microscopy applied to the
imaging of electron transport through buried semiconductor nanostructures.
After a brief description of the technique and of its possible artifacts, we
give a summary of some of its most instructive achievements found in the
literature and we present an updated review of our own research. It focuses on
the imaging of GaInAs-based quantum rings both in the low magnetic field
Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the
given examples, we emphasize how a local-probe approach is able to shed new, or
complementary, light on transport phenomena which are usually studied by means
of macroscopic conductance measurements.Comment: Invited talk by SH at 39th "Jaszowiec" International School and
Conference on the Physics of Semiconductors, Krynica-Zdroj, Poland, June 201
Half-integer Shapiro steps at the 0-pi crossover of a ferromagnetic Josephson junction
We investigate the current-phase relation of S/F/S junctions near the
crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions
where this crossover is driven both by thickness and temperature. For a certain
thickness a non-zero minimum of critical current is observed at the crossover
temperature. We analyze this residual supercurrent by applying a high frequency
excitation and observe the formation of half-integer Shapiro steps. We
attribute these fractional steps to a doubling of the Josephson frequency due
to a sin(2*phi) current-phase relation. This phase dependence is explained by
the splitting of the energy levels in the ferromagnetic exchange field.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let
Low Magnetic Field Regime of a Gate-Defined Constriction in High-Mobility Graphene
We report on the evolution of the coherent electronic transport through a
gate-defined constriction in a high-mobility graphene device from ballistic
transport to quantum Hall regime upon increasing the magnetic field. At low
field, the conductance exhibits Fabry-P\'erot resonances resulting from the npn
cavities formed beneath the top-gated regions. Above a critical field
corresponding to the cyclotron radius equal to the npn cavity length,
Fabry-P\'erot resonances vanish and snake trajectories are guided through the
constriction with a characteristic set of conductance oscillations. Increasing
further the magnetic field allows us to probe the Landau level spectrum in the
constriction, with distortions due to the combination of confinement and
de-confinement of Landau levels in a saddle potential. These observations are
confirmed by numerical calculations
On-Demand Single-Electron Source via Single-Cycle Acoustic Pulses
Surface acoustic waves (SAWs) are a reliable solution to transport single
electrons with precision in piezoelectric semiconductor devices. Recently,
highly efficient single-electron transport with a strongly compressed
single-cycle acoustic pulse has been demonstrated. This approach, however,
requires surface gates constituting the quantum dots, their wiring, and
multiple gate movements to load and unload the electrons, which is very
time-consuming. Here, on the contrary, we employ such a single-cycle acoustic
pulse in a much simpler way - without any quantum dot at the entrance or exit
of a transport channel - to perform single-electron transport between distant
electron reservoirs. We observe the transport of a solitary electron in a
single-cycle acoustic pulse via the appearance of the quantized
acousto-electric current. The simplicity of our approach allows for on-demand
electron emission with arbitrary delays on a ns time scale. We anticipate that
enhanced synthesis of the SAWs will facilitate electron-quantum-optics
experiments with multiple electron flying qubits
Coulomb-mediated antibunching of an electron pair surfing on sound
Electron flying qubits are envisioned as potential information link within a
quantum computer, but also promise -- alike photonic approaches -- a
self-standing quantum processing unit. In contrast to its photonic counterpart,
electron-quantum-optics implementations are subject to Coulomb interaction,
which provide a direct route to entangle the orbital or spin degree of freedom.
However, the controlled interaction of flying electrons at the single particle
level has not yet been established experimentally. Here we report antibunching
of a pair of single electrons that is synchronously shuttled through a circuit
of coupled quantum rails by means of a surface acoustic wave. The in-flight
partitioning process exhibits a reciprocal gating effect which allows us to
ascribe the observed repulsion predominantly to Coulomb interaction. Our
single-shot experiment marks an important milestone on the route to realise a
controlled-phase gate for in-flight quantum manipulations