879 research outputs found
Cooperative Chiral Order in Copolymers of Chiral and Achiral Units
Polyisocyanates can be synthesized with chiral and achiral pendant groups
distributed randomly along the chains. The overall chiral order, measured by
optical activity, is strongly cooperative and depends sensitively on the
concentration of chiral pendant groups. To explain this cooperative chiral
order theoretically, we map the random copolymer onto the one-dimensional
random-field Ising model. We show that the optical activity as a function of
composition is well-described by the predictions of this theory.Comment: 13 pages, including 3 postscript figures, uses REVTeX 3.0 and
epsf.st
Decomposition of multicomponent mass spectra using Bayesian probability theory
We present a method for the decomposition of mass spectra of mixture gases
using Bayesian probability theory. The method works without any calibration
measurement and therefore applies also to the analysis of spectra containing
unstable species. For the example of mixtures of three different hydrocarbon
gases the algorithm provides concentrations and cracking coefficients of each
mixture component as well as their confidence intervals. The amount of
information needed to obtain reliable results and its relation to the accuracy
of our analysis are discussed
On the completeness of quantum computation models
The notion of computability is stable (i.e. independent of the choice of an
indexing) over infinite-dimensional vector spaces provided they have a finite
"tensorial dimension". Such vector spaces with a finite tensorial dimension
permit to define an absolute notion of completeness for quantum computation
models and give a precise meaning to the Church-Turing thesis in the framework
of quantum theory. (Extra keywords: quantum programming languages, denotational
semantics, universality.)Comment: 15 pages, LaTe
Environment and classical channels in categorical quantum mechanics
We present a both simple and comprehensive graphical calculus for quantum
computing. In particular, we axiomatize the notion of an environment, which
together with the earlier introduced axiomatic notion of classical structure
enables us to define classical channels, quantum measurements and classical
control. If we moreover adjoin the earlier introduced axiomatic notion of
complementarity, we obtain sufficient structural power for constructive
representation and correctness derivation of typical quantum informatic
protocols.Comment: 26 pages, many pics; this third version has substantially more
explanations than previous ones; Journal reference is of short 14 page
version; Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
Chiral molecule adsorption on helical polymers
We present a lattice model for helicity induction on an optically inactive
polymer due to the adsorption of exogenous chiral amine molecules. The system
is mapped onto a one-dimensional Ising model characterized by an on-site
polymer helicity variable and an amine occupancy one. The equilibrium
properties are analyzed at the limit of strong coupling between helicity
induction and amine adsorption and that of non-interacting adsorbant molecules.
We discuss our results in view of recent experimental results
Thurston's pullback map on the augmented Teichm\"uller space and applications
Let be a postcritically finite branched self-cover of a 2-dimensional
topological sphere. Such a map induces an analytic self-map of a
finite-dimensional Teichm\"uller space. We prove that this map extends
continuously to the augmented Teichm\"uller space and give an explicit
construction for this extension. This allows us to characterize the dynamics of
Thurston's pullback map near invariant strata of the boundary of the augmented
Teichm\"uller space. The resulting classification of invariant boundary strata
is used to prove a conjecture by Pilgrim and to infer further properties of
Thurston's pullback map. Our approach also yields new proofs of Thurston's
theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page
Picturing classical and quantum Bayesian inference
We introduce a graphical framework for Bayesian inference that is
sufficiently general to accommodate not just the standard case but also recent
proposals for a theory of quantum Bayesian inference wherein one considers
density operators rather than probability distributions as representative of
degrees of belief. The diagrammatic framework is stated in the graphical
language of symmetric monoidal categories and of compact structures and
Frobenius structures therein, in which Bayesian inversion boils down to
transposition with respect to an appropriate compact structure. We characterize
classical Bayesian inference in terms of a graphical property and demonstrate
that our approach eliminates some purely conventional elements that appear in
common representations thereof, such as whether degrees of belief are
represented by probabilities or entropic quantities. We also introduce a
quantum-like calculus wherein the Frobenius structure is noncommutative and
show that it can accommodate Leifer's calculus of `conditional density
operators'. The notion of conditional independence is also generalized to our
graphical setting and we make some preliminary connections to the theory of
Bayesian networks. Finally, we demonstrate how to construct a graphical
Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture
Positional, Reorientational and Bond Orientational Order in DNA Mesophases
We investigate the orientational order of transverse polarization vectors of
long, stiff polymer molecules and their coupling to bond orientational and
positional order in high density mesophases. Homogeneous ordering of transverse
polarization vector promotes distortions in the hexatic phase, whereas
inhomogeneous ordering precipitates crystalization of the 2D sections with
different orientations of the transverse polarization vector on each molecule
in the unit cell. We propose possible scenarios for going from the hexatic
phase, through the distorted hexatic phase to the crystalline phase with an
orthorhombic unit cell observed experimentally for the case of DNA.Comment: 4 pages, 2 figure
Tilt Texture Domains on a Membrane and Chirality induced Budding
We study the equilibrium conformations of a lipid domain on a planar fluid
membrane where the domain is decorated by a vector field representing the tilt
of the stiff fatty acid chains of the lipid molecules, while the surrounding
membrane is fluid and structureless. The inclusion of chirality in the bulk of
the domain induces a novel budding of the membrane, which preempts the budding
induced by a decrease in interfacial tension.Comment: 5 pages, 3 figure
- …