76 research outputs found

    Patterns of biomedical science production in a sub-Saharan research center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center.</p> <p>Methods</p> <p>In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions.</p> <p>Results</p> <p>The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa.</p> <p>Conclusion</p> <p>Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.</p

    Re-emergence of dengue, chikungunya, and Zika viruses in 2021 after a 10-year gap in Gabon

    Get PDF
    Mosquito-borne viral infections are a major concern in endemic areas, such as Africa. Although outbreaks have been reported throughout Africa, only a few surveillance studies have been conducted in Gabon since the outbreaks of dengue virus (DENV) and chikungunya virus (CHIKV) in 2010. Therefore, the current situation is unknown. This study aimed to investigate the presence of arboviruses, especially DENV (serotypes 1–4), CHIKV, and Zika virus (ZIKV), in Gabon, Central Africa. Between 2020 and 2021, we collected 1060 serum samples from febrile patients and screened them against viruses using reverse transcription-quantitative PCR. We detected two DENV serotypes 1 (DENV-1), one CHIKV, and one ZIKV, and subsequently analyzed the genome sequences. To determine the genetic diversity and transmission route of the viruses, phylogenetic analysis was performed using complete or partial genome sequences. The DENV-1 and CHIKV strains detected in this study were closely related to the previous Gabonese strains, whereas the recent ZIKV strain was genetically different from a strain detected in 2007 in Gabon. This study provides new genomic information on DENV-1, CHIKV, and ZIKV that were detected in Gabon and insight into the circulation of the viruses in the country and their introduction from neighboring African countries

    Peripheral blood monocyte-to-lymphocyte ratio at study enrollment predicts efficacy of the RTS,S malaria vaccine: analysis of pooled phase II clinical trial data.

    Get PDF
    BACKGROUND: RTS,S is the most advanced candidate malaria vaccine but it is only partially protective and the causes of inter-individual variation in efficacy are poorly understood. Here, we investigated whether peripheral blood monocyte-to-lymphocyte ratios (ML ratio), previously shown to correlate with clinical malaria risk, could account for differences in RTS,S efficacy among phase II trial participants in Africa. METHODS: Of 11 geographical sites where RTS,S has been evaluated, pre-vaccination ML ratios were only available for trial participants in Kilifi, Kenya (N = 421) and Lambarene, Gabon (N = 189). Using time to first clinical malaria episode as the primary endpoint we evaluated the effect of accounting for ML ratio on RTS,S vaccine efficacy against clinical malaria by Cox regression modeling. RESULTS: The unadjusted efficacy of RTS,S in this combined dataset was 47% (95% confidence interval (CI) 26% to 62%, P <0.001). However, RTS,S efficacy decreased with increasing ML ratio, ranging from 67% (95% CI 64% to 70%) at an ML ratio of 0.1 to 5% (95% CI -3% to 13%) at an ML ratio of 0.6. The statistical interaction between RTS,S vaccination and ML ratio was still evident after adjustment for covariates associated with clinical malaria risk in this dataset. CONCLUSION: The results suggest that stratification of study participants by ML ratio, easily measured from full differential blood counts before vaccination, might help identify children who are highly protected and those that are refractory to protection with the RTS,S vaccine. Identifying causes of low vaccine efficacy among individuals with high ML ratio could inform strategies to improve overall RTS,S vaccine efficacy. TRIAL REGISTRATION: ClinicalTrials.Gov numbers NCT00380393 and NCT00436007

    Efficacy of RTS,S malaria vaccines: individual-participant pooled analysis of phase 2 data.

    Get PDF
    BACKGROUND: The efficacy of RTS,S/AS01 as a vaccine for malaria is being tested in a phase 3 clinical trial. Early results show significant, albeit partial, protection against clinical malaria and severe malaria. To ascertain variations in vaccine efficacy according to covariates such as transmission intensity, choice of adjuvant, age at vaccination, and bednet use, we did an individual-participant pooled analysis of phase 2 clinical data. METHODS: We analysed data from 11 different sites in Africa, including 4453 participants. We measured heterogeneity in vaccine efficacy by estimating the interactions between covariates and vaccination in pooled multivariable Cox regression and Poisson regression analyses. Endpoints for measurement of vaccine efficacy were infection, clinical malaria, severe malaria, and death. We defined transmission intensity levels according to the estimated local parasite prevalence in children aged 2-10 years (PrP₂₋₁₀), ranging from 5% to 80%. Choice of adjuvant was either AS01 or AS02. FINDINGS: Vaccine efficacy against all episodes of clinical malaria varied by transmission intensity (p=0·001). At low transmission (PrP₂₋₁₀ 10%) vaccine efficacy was 60% (95% CI 54 to 67), at moderate transmission (PrP₂₋₁₀ 20%) it was 41% (21 to 57), and at high transmission (PrP₂₋₁₀ 70%) the efficacy was 4% (-10 to 22). Vaccine efficacy also varied by adjuvant choice (p<0·0001)--eg, at low transmission (PrP₂₋₁₀ 10%), efficacy varied from 60% (95% CI 54 to 67) for AS01 to 47% (14 to 75) for AS02. Variations in efficacy by age at vaccination were of borderline significance (p=0·038), and bednet use and sex were not significant covariates. Vaccine efficacy (pooled across adjuvant choice and transmission intensity) varied significantly (p<0·0001) according to time since vaccination, from 36% efficacy (95% CI 24 to 45) at time of vaccination to 0% (-38 to 38) after 3 years. INTERPRETATION: Vaccine efficacy against clinical disease was of limited duration and was not detectable 3 years after vaccination. Furthermore, efficacy fell with increasing transmission intensity. Outcomes after vaccination cannot be gauged accurately on the basis of one pooled efficacy figure. However, predictions of public-health outcomes of vaccination will need to take account of variations in efficacy by transmission intensity and by time since vaccination. FUNDING: Medical Research Council (UK); Bill & Melinda Gates Foundation Vaccine Modelling Initiative; Wellcome Trust

    Re-emergence of dengue virus serotype 3 infections in Gabon in 2016?2017, and evidence for the risk of repeated dengue virus infections

    Get PDF
    Objectives: Dengue outbreaks, mainly caused by dengue virus serotype 2 (DENV-2), occurred in 2007 and in 2010 in Gabon, Central Africa. However, information on DENV infections has been insufficient since 2010. The aim of this study was to investigate the current DENV infection scenario and the risk of repeated infections in Gabon. Methods: During 2015?2017, serum samples were collected from enrolled febrile participants and were tested for DENV infection using RT-qPCR. DENV-positive samples were analyzed for a history of previous DENV infection(s) using ELISA. The complete DENV genome was sequenced to analyze the phylogeny of Gabonese DENV strains. Results: DENV-3 was exclusively detected, with a high rate of anti-DENV IgG seropositivity among DENV-3-positive participants. DENV-3 showed higher infection rates in adults and the infection was seasonal with peaks in the rainy seasons. Phylogenetic analysis revealed that Gabonese DENV-3 originated from West African strains and has been circulating continuously in Gabon since at least 2010, when the first DENV-3 case was reported. Conclusions: These findings indicate stable DENV-3 circulation and the risk of repeated DENV infections in Gabon, highlighting the need for continuous monitoring to control DENV infections

    Immunogenicity of the RTS,S/AS01 Malaria Vaccine and\ud Implications for Duration of Vaccine Efficacy: Secondary\ud Analysis of Data from a Phase 3 Randomised Controlled Trial

    Get PDF
    The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine effi cacy using data from a phase 3 trial done between 2009 and 2014. Using data from 8922 African children aged 5 1317 months and 6537 African infants aged 6 1312 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5 1317 months than in those aged 6 1312 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6 1312 weeks and higher immunogenicity in those aged 5 1317 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5 1317 months, the half-life of the shortlived component of the antibody response was 45 days (95% credible interval 42 1348) and that of the long-lived component was 591 days (557 13632). After primary vaccination 12% (11 1313) of the response was estimated to be longlived, rising to 30% (28 1332%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98 13153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of effi cacy against clinical malaria across diff erent age categories and transmission intensities, and effi cacy wanes more rapidly at higher transmission intensity Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 effi cacy, with or without a booster dose, providing a valuable surrogate of eff ectiveness for new RTS,S formulations in the age groups considered

    Pyronaridine-artesunate real-world safety, tolerability, and effectiveness in malaria patients in 5 African countries: A single-arm, open-label, cohort event monitoring study

    Get PDF
    BackgroundIn Phase II/III randomized controlled clinical trials for the treatment of acute uncomplicated malaria, pyronaridine-artesunate demonstrated high efficacy and a safety profile consistent with that of comparators, except that asymptomatic, mainly mild-to-moderate transient increases in liver aminotransferases were reported for some patients. Hepatic safety, tolerability, and effectiveness have not been previously assessed under real-world conditions in Africa.Methods and findingsThis single-arm, open-label, cohort event monitoring study was conducted at 6 health centers in Cameroon, Democratic Republic of Congo, Gabon, Ivory Coast, and Republic of Congo between June 2017 and April 2019. The trial protocol as closely as possible resembled real-world clinical practice for the treatment of malaria at the centers. Eligible patients were adults or children of either sex, weighing at least 5 kg, with acute uncomplicated malaria who did not have contraindications for pyronaridine-artesunate treatment as per the summary of product characteristics. Patients received fixed-dose pyronaridine-artesunate once daily for 3 days, dosed by body weight, without regard to food intake. A tablet formulation was used in adults and adolescents and a pediatric granule formulation in children and infants under 20 kg body weight. The primary outcome was the hepatic event incidence, defined as the appearance of the clinical signs and symptoms of hepatotoxicity confirmed by a >2× rise in alanine aminotransferase/aspartate aminotransferase (ALT/AST) versus baseline in patients with baseline ALT/AST >2× the upper limit of normal (ULN). As a secondary outcome, this was assessed in patients with ALT/AST >2× ULN prior to treatment versus a matched cohort of patients with normal baseline ALT/AST. The safety population comprised 7,154 patients, of mean age 13.9 years (standard deviation (SD) 14.6), around half of whom were male (3,569 [49.9%]). Patients experienced 8,560 malaria episodes; 158 occurred in patients with baseline ALT/AST elevations >2×ULN. No protocol-defined hepatic events occurred following pyronaridine-artesunate treatment of malaria patients with or without baseline hepatic dysfunction. Thus, no cohort comparison could be undertaken. Also, as postbaseline clinical chemistry was only performed where clinically indicated, postbaseline ALT/AST levels were not systematically assessed for all patients. Adverse events of any cause occurred in 20.8% (1,490/7,154) of patients, most frequently pyrexia (5.1% [366/7,154]) and vomiting (4.2% [303/7,154]). Adjusting for Plasmodium falciparum reinfection, clinical effectiveness at day 28 was 98.6% ([7,369/7,746] 95% confidence interval (CI) 98.3 to 98.9) in the per-protocol population. There was no indication that comorbidities or malnutrition adversely affected outcomes. The key study limitation was that postbaseline clinical biochemistry was only evaluated when clinically indicated.ConclusionsPyronaridine-artesunate had good tolerability and effectiveness in a representative African population under conditions similar to everyday clinical practice. These findings support pyronaridine-artesunate as an operationally useful addition to the management of acute uncomplicated malaria.Trial registrationClinicalTrials.gov NCT03201770

    Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial.

    Get PDF
    BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2 × 107 plaque-forming units (PFU) in a trial in Guinea. This study provides further safety and immunogenicity data. METHODS AND FINDINGS: A randomised, open-label phase I trial in Lambaréné, Gabon, studied 5 single intramuscular vaccine doses of 3 × 103, 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU in 115 adults and a dose of 2 × 107 PFU in 20 adolescents and 20 children. The primary objective was safety and tolerability 28 days post-injection. Immunogenicity, viraemia, and shedding post-vaccination were evaluated as secondary objectives. In adults, mild-to-moderate adverse events were frequent, but there were no serious or severe adverse events related to vaccination. Before vaccination, Zaire Ebola virus (ZEBOV)-glycoprotein (GP)-specific and ZEBOV antibodies were detected in 11% and 27% of adults, respectively. In adults, 74%-100% of individuals who received a dose 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU had a ≥4.0-fold increase in geometric mean titres (GMTs) of ZEBOV-GP-specific antibodies at day 28, reaching GMTs of 489 (95% CI: 264-908), 556 (95% CI: 280-1,101), 1,245 (95% CI: 899-1,724), and 1,503 (95% CI: 931-2,426), respectively. Twenty-two percent of adults had a ≥4-fold increase of ZEBOV antibodies, with GMTs at day 28 of 1,015 (647-1,591), 1,887 (1,154-3,085), 1,445 (1,013-2,062), and 3,958 (2,249-6,967) for the same doses, respectively. These antibodies persisted up to day 180 for doses ≥3 × 105 PFU. Adults with antibodies before vaccination had higher GMTs throughout. Neutralising antibodies were detected in more than 50% of participants at doses ≥3 × 105 PFU. As in adults, no serious or severe adverse events related to vaccine occurred in adolescents or children. At day 2, vaccine RNA titres were higher for adolescents and children than adults. At day 7, 78% of adolescents and 35% of children had recombinant vesicular stomatitis virus RNA detectable in saliva. The vaccine induced high GMTs of ZEBOV-GP-specific antibodies at day 28 in adolescents, 1,428 (95% CI: 1,025-1,989), and children, 1,620 (95% CI: 806-3,259), and in both groups antibody titres increased up to day 180. The absence of a control group, lack of stratification for baseline antibody status, and imbalances in male/female ratio are the main limitations of this study. CONCLUSIONS: Our data confirm the acceptable safety and immunogenicity profile of the 2 × 107 PFU dose in adults and support consideration of lower doses for paediatric populations and those who request boosting. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201411000919191
    corecore