55 research outputs found

    DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation.

    Get PDF
    An algorithm assessing the methylation levels of 353 informative CpG sites in the human genome permits accurate prediction of the chronologic age of a subject. Interestingly, when there is discrepancy between the predicted age and chronologic age (age acceleration or AgeAccel ), patients are at risk for morbidity and mortality. Identification of infertile patients at risk for accelerated reproductive senescence may permit preventative action. This study aimed to assess the accuracy of the epigenetic clock concept in reproductive age women undergoing fertility treatment by applying the age prediction algorithm in peripheral (white blood cells [WBCs]) and follicular somatic cells (cumulus cells [CCs]), and to identify whether women with premature reproductive aging (diminished ovarian reserve) were at risk of AgeAccel in their age prediction. Results indicated that the epigenetic algorithm accurately predicts age when applied to WBCs but not to CCs. The age prediction of CCs was substantially younger than chronologic age regardless of the patient\u27s age or response to stimulation. In addition, telomeres of CCs were significantly longer than that of WBCs. Our findings suggest that CCs do not demonstrate changes in methylome-predicted age or telomere-length in association with increasing female age or ovarian response to stimulation

    Ovarian reserve parameters and IVF outcomes in 510 women with poor ovarian response (POR) treated with intraovarian injection of autologous platelet rich plasma (PRP)

    Get PDF
    The aim of the current study was to characterize ovarian reserve parameters and IVF outcomes in women with a history of poor ovarian response (POR) treated with intraovarian injection of autologous platelet rich plasma (PRP). Reproductive age women (N=510; age range 30-45yo) diagnosed with POR based on Poseidon criteria were included in the study. PRP treatment resulted in higher AFC, higher serum AMH, lower serum FSH, and a higher number of mature oocytes and cleavage and blastocyst stage embryos. After PRP injection, 22 women (4.3%) conceived spontaneously, 14 (2.7%) were lost to follow up, and 474 (92.9%) attempted IVF. Among women who attempted IVF, 312 (65.8%) generated embryos and underwent embryo transfer, 83 (17.5%) achieved a pregnancy, and 54 (11.4%) achieved sustained implantation/live birth (SI/LB). In total, of the 510 women with POR and mean age of 40.3, PRP resulted in improvement of ovarian reserve parameters, a pregnancy rate of 20.5% and SI/LB rate of 12.9%. Our findings suggest that PRP treatment may be considered in women with POR. For wider clinical application, its clinical efficacy will need to be demonstrated in prospective randomized clinical trials

    Mechanism of cell polarisation and first lineage segregation in the human embryo

    Get PDF
    The formation of differential cell lineages in the mammalian blastocyst from the totipotent zygote is crucial for implantation and the success of the whole pregnancy. The first lineage segregation generates the polarised trophectoderm (TE) tissue, which forms the placenta, and the apolar inner cell mass (ICM), which mainly gives rise to all foetal tissues and also the yolk sac. The mechanism underlying this cell fate segregation has been extensively studied in the mouse embryo. However, when and how it takes place in the human embryo remains unclear. Here, using time-lapse imaging and 325 surplus human embryos, we provide a detailed characterisation of morphological events and transcription factor expression and localisation to understand how they lead to the first lineage segregation in human embryogenesis. We show that the first lineage segregation of the human embryo is triggered by cell polarisation that occurs at the 8-cell stage in two sequential steps. In the first step, F-actin becomes apically polarised concomitantly with embryo compaction. In the second step, the Par complex becomes polarised to form the apical cellular domain. Mechanistically, we show that activation of Phospholipase C (PLC) triggers actin polarisation and is therefore essential for apical domain formation, as is the case in mouse embryos. Finally, we show that, in contrast to the mouse embryo, the key extra-embryonic determinant GATA3 is expressed not only in extra-embryonic lineage precursors upon blastocyst formation. However, the cell polarity machinery enhances the expression and nuclear accumulation of GATA3. In summary, our results demonstrate for the first time that cell polarisation reinforces the first lineage segregation in the human embryo

    Developmental potential of aneuploid human embryos cultured beyond implantation

    Get PDF
    Funder: Weston Havens Foundation; doi: https://doi.org/10.13039/100011223Abstract: Aneuploidy, the presence of an abnormal number of chromosomes, is a major cause of early pregnancy loss in humans. Yet, the developmental consequences of specific aneuploidies remain unexplored. Here, we determine the extent of post-implantation development of human embryos bearing common aneuploidies using a recently established culture platform. We show that while trisomy 15 and trisomy 21 embryos develop similarly to euploid embryos, monosomy 21 embryos exhibit high rates of developmental arrest, and trisomy 16 embryos display a hypo-proliferation of the trophoblast, the tissue that forms the placenta. Using human trophoblast stem cells, we show that this phenotype can be mechanistically ascribed to increased levels of the cell adhesion protein E-CADHERIN, which lead to premature differentiation and cell cycle arrest. We identify three cases of mosaicism in embryos diagnosed as full aneuploid by pre-implantation genetic testing. Our results present the first detailed analysis of post-implantation development of aneuploid human embryos

    Metabolomic Assessment of Embryo Viability

    No full text

    Current trends and progress in clinical applications of oocyte cryopreservation

    No full text
    WOS: 000318752000012PubMed: 23562954Purpose of review To delineate the current trends in the clinical application of oocyte cryopreservation. Recent findings Although the first live birth from oocyte cryopreservation was reported approximately three decades ago, significant improvement in the clinical application of oocyte cryopreservation took place only over the past decade. On the basis of the available evidence suggesting that success rates with donor oocyte vitrification are similar to that of IVF with fresh donor oocytes, the American Society of Reproductive Medicine has recently stated that oocyte cryopreservation should no longer be considered experimental for medical indications, outlying elective oocyte cryopreservation. Meanwhile, a few surveys on the attitudes toward oocyte cryopreservation revealed that elective use for the postponement of fertility is currently the most common indication for oocyte cryopreservation. Most recently, a randomized controlled trial revealed important evidence on the safety of nondonor oocyte cryopreservation, and confirmed that the clinical success of vitrification is comparable to that of IVF with fresh oocytes. Summary The evidence suggesting similar IVF success rates with both donor and nondonor cryopreserved oocytes compared with fresh oocytes will increase the utilization of elective oocyte cryopreservation. Appropriate counseling of women for oocyte cryopreservation requires the establishment of age-based clinical success rates with cryopreserved oocytes for various indications.National Institute of Health (NIH)United States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R01HD059909]E.S. is supported by Award R01HD059909 from the National Institute of Health (NIH). The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official view of NIH. There are no conflicts of interest

    Mitochondria as a biomarker for IVF outcome

    No full text

    Mitochondrial dysfunction and ovarian aging

    No full text
    © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Mitochondria are double-membrane-bound organelles that are responsible for the generation of most of the cell\u27s energy. Mitochondrial dysfunction has been implicated in cellular senescence in general and ovarian aging in particular. Recent studies exploited this association by studying mitochondrial DNA (mtDNA) copy number as a potential biomarker of embryo viability and the use of mitochondrial nutrients and autologous mitochondrial transfer as a potential treatment for poor ovarian function and response
    corecore