30 research outputs found

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Mouse Chromosome 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd

    Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses

    No full text
    Fifty-three strains identified as Paenibacillus azotofixans were isolated from the rhizoplane and rhizosphere of different grasses and from soil. To study the diversity within this species, four approaches were used: assessment of homology with a nifKDH probe in hybridization experiments; use of a selected 20-mer primer to produce RAPD profiles and of BOX- PCR to generate genomic fingerprintings; and phenotypic tests using the API50CH system. The API tests performed with the 53 P. azotofixans strains showed that all strains produced acid from 15 carbohydrates; using six other carbohydrates (sorbitol, dulcitol, tagarose, starch, glycogen and D- arabitol), the strains could be divided in five groups of related strains. All strains tested showed homology to Klebsiella pneumoniae nifKDH genes, resulting in 14 different hybridization patterns with this probe. Using RAPD- fingerprinting with one appropriate primer, 23 different amplification patterns were observed. The BOX-PCR approach confirmed the grouping suggested by the RAPD fingerprinting. A comparison of the 53 strains by similarity matrix analysis using the data obtained in all approaches resulted in a phenogram, grouping them into five broad groups at 74% similarity and into 27 subgroups at 94% similarity. At 100% similarity, 31 groups of strains could be formed, indicating a high degree of diversity among the strains tested. Overall, the diversity was independent from the origin of strains, since a variety of different groups was isolated from each plant studied. However, some clusters were dominant in wheat and sugarcane samples. The results indicated that the methods used here are sensitive indicators of diversity among the strains studied and can be applied as efficient and reliable means for further ecological and biogeographical studies
    corecore