4,747 research outputs found

    Studies on the Reduction of Radon Plate-Out

    Full text link
    The decay of common radioactive gases, such as radon, produces stable isotopes by a sequence of daughter particles with varied half-lives. These daughter particles are a significant source of gamma, neutron, and alpha particle backgrounds that can mimic desired signals in dark matter and neutrinoless double beta decay experiments. In the LUMINA Laboratory at Southern Methodist University (SMU), studies of radon plate-out onto copper samples are conducted using one of XIA's first five UltraLo 1800 alpha counters. We present results from investigations into various mitigation approaches. A custom-built copper holder (in either plastic or metal) has been designed and produced to maximize the copper's exposure to 220Rn. The 220Rn source is a collection of camping lantern mantles. We present the current status of control and experimental methods for addressing radon exposure levels.Comment: 4 pages, 1 figure, Conference Proceedings for Low Radioactivity Techniques 201

    Acute effects of sex steroids on visual processing in male goldfish

    Get PDF
    Elevations of sex steroids induced by social cues can rapidly modulate social behavior, but we know little about where they act within the nervous system to produce such effects. In male goldfish, testosterone (T) rapidly increases approach responses to the visual cues of females through its conversion to estradiol. Because aromatase is expressed in the retina, we tested if T can acutely influence retina responses to visual stimuli, and investigated the receptor mechanisms that may mediate such effects. Specifically, we measured FOS protein immunoreactivity to determine if T affects cellular responses to visual stimuli that include females, and used electrophysiology to investigate whether T can generally affect light sensitivity. We found that T acutely increased FOS responses to the simultaneous onset of light and the presence of female visual stimuli, both of which would normally be associated with early morning spawning, and increased electrophysiological responses to low intensity light pulses. Both effects were blocked by an estrogen receptor beta (ERβ) antagonist, indicating that T is likely being converted to estradiol (E2) and acting through an ERβ mediated mechanism to acutely modulate visual processing. Changes in sensory processing could subsequently influence approach behavior to increase reproductive success in competitive mating environments

    Protein spot arrays on graphene oxide coatings for efficient single-cell capture

    Get PDF
    Biomedical applications such as cell screening or cell–cell interaction studies require placement and adhesion of cells on surfaces with controlled numbers and location. In particular, single-cell arraying and positioning has come into focus as a basis of such applications. An ideal substrate would combine biocompatibility with favorable attributes such as pattern stability and easy processing. Here, we present a simple yet effective approach to single-cell arraying based on a graphene oxide (GO) surface carrying protein (fibronectin) microarrays to define cell adhesion points. These capture NIH-3T3 cells, resulting in cell arrays, which are benchmarked against analogous arrays on silanized glass samples. We reveal significant improvement in cell-capture performance by the GO coating with regards to overall cell adhesion and single-cell feature occupancy. This overall improvement of cell-arraying combined with retained transparency of substrate for microscopy and good biocompatibility makes this graphene-based approach attractive for single-cell experiments

    Dielectric function of InGaAs in the visible

    Get PDF
    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data

    Study of InGaAs based MODFET structures using variable angle spectroscopic ellipsometry

    Get PDF
    Variable angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs based MODFET structures. Strained and unstrained InGaAs channels were made by MBE on InP substrates and by MOCVD on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth calibration results. The MBE made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice matched concentration

    Toward Improving Safety in Neurosurgery with an Active Handheld Instrument

    Get PDF
    Microsurgical procedures, such as petroclival meningioma resection, require careful surgical actions in order to remove tumor tissue, while avoiding brain and vessel damaging. Such procedures are currently performed under microscope magnification. Robotic tools are emerging in order to filter surgeons’ unintended movements and prevent tools from entering forbidden regions such as vascular structures. The present work investigates the use of a handheld robotic tool (Micron) to automate vessel avoidance in microsurgery. In particular, we focused on vessel segmentation, implementing a deep-learning-based segmentation strategy in microscopy images, and its integration with a feature-based passive 3D reconstruction algorithm to obtain accurate and robust vessel position. We then implemented a virtual-fixture-based strategy to control the handheld robotic tool and perform vessel avoidance. Clay vascular phantoms, lying on a background obtained from microscopy images recorded during petroclival meningioma surgery, were used for testing the segmentation and control algorithms. When testing the segmentation algorithm on 100 different phantom images, a median Dice similarity coefficient equal to 0.96 was achieved. A set of 25 Micron trials of 80 s in duration, each involving the interaction of Micron with a different vascular phantom, were recorded, with a safety distance equal to 2 mm, which was comparable to the median vessel diameter. Micron’s tip entered the forbidden region 24% of the time when the control algorithm was active. However, the median penetration depth was 16.9 ÎĽm, which was two orders of magnitude lower than median vessel diameter. Results suggest the system can assist surgeons in performing safe vessel avoidance during neurosurgical procedures
    • …
    corecore