17 research outputs found

    Melav2, an elav-like gene, is essential for spermatid differentiation in the flatworm Macrostomum lignano

    Get PDF
    Background Failure of sperm differentiation is one of the major causes of male sterility. During spermiogenesis, spermatids undergo a complex metamorphosis, including chromatin condensation and cell elongation. Although the resulting sperm morphology and property can vary depending on the species, these processes are fundamental in many organisms. Studying genes involved in such processes can thus provide important information for a better understanding of spermatogenesis, which might be universally applied to many other organisms. Results In a screen for genes that have gonad-specific expression we isolated an elav-like gene, melav2, from Macrostomum lignano, containing the three RNA recognition motifs characteristic of elav-like genes. We found that melav2 mRNA was expressed exclusively in the testis, as opposed to the known elav genes, which are expressed in the nervous system. The RNAi phenotype of melav2 was characterized by an aberrant spermatid morphology, where sperm elongation often failed, and an empty seminal vesicle. Melav2 RNAi treated worms were thus male-sterile. Further analysis revealed that in melav2 RNAi treated worms precocious chromatin condensation occurred during spermatid differentiation, resulting in an abnormally tightly condensed chromatin and large vacuoles in round spermatids. In addition, immunostaining using an early-spermatid specific antibody revealed that melav2 RNAi treated worms had a larger amount of signal positive cells, suggesting that many cells failed the transition from early spermatid stage. Conclusions We characterize a new function for elav-like genes, showing that melav2 plays a crucial role during spermatid differentiation, especially in the regulation of chromatin condensation and/or cell elongation

    Transcriptomic analysis reveals differences in the regulation of amino acid metabolism in asexual and sexual planarians

    Get PDF
    Abstract Many flatworms can alternate between asexual and sexual reproduction. This is a powerful reproductive strategy enabling them to benefit from the features of the two reproductive modes, namely, rapid multiplication and genetic shuffling. The two reproductive modes are enabled by the presence of pluripotent adult stem cells (neoblasts), by generating any type of tissue in the asexual mode, and producing and maintaining germ cells in the sexual mode. In the current study, RNA sequencing (RNA-seq) was used to compare the transcriptomes of two phenotypes of the planarian Dugesia ryukyuensis: an asexual OH strain and an experimentally sexualized OH strain. Pathway enrichment analysis revealed striking differences in amino acid metabolism in the two worm types. Further, the analysis identified serotonin as a new bioactive substance that induced the planarian ovary de novo in a postembryonic manner. These findings suggest that different metabolic states and physiological conditions evoked by sex-inducing substances likely modulate stem cell behavior, depending on their different function in the asexual and sexual reproductive modes. The combination of RNA-seq and a feeding assay in D. ryukyuensis is a powerful tool for studying the alternation of reproductive modes, disentangling the relationship between gene expression and chemical signaling molecules

    The Dugesia ryukyuensis Database as a Molecular Resource for Studying Switching of the Reproductive System

    Get PDF
    The planarian Dugesia ryukyuensis reproduces both asexually and sexually, and can switch from one mode of reproduction to the other. We recently developed a method for experimentally switching reproduction of the planarian from the asexual to the sexual mode. We constructed a cDNA library from sexualized D. ryukyuensis and sequenced and analyzed 8,988 expressed sequence tags (ESTs). The ESTs were analyzed and grouped into 3,077 non-redundant sequences, leaving 1,929 singletons that formed the basis of unigene sets. Fifty-six percent of the cDNAs analyzed shared similarity (E-value<1E -20) with sequences deposited in NCBI. Highly redundant sequences encoded granulin and actin, which are expressed in the whole body, and other redundant sequences encoded a Vasa-like protein, which is known to be a component of germ-line cells and is expressed in the ovary, and Y-protein, which is expressed in the testis. The sexualized planarian expressed sequence tag database (http://planaria.bio.keio.ac.jp/planaria/) is an open-access, online resource providing access to sequence, classification, clustering, and annotation data. This database should constitute a powerful tool for analyzing sexualization in planarians

    Sex-inducing effects toward planarians widely present among parasitic flatworms

    Get PDF
    Summary Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.journal articl

    Experimental tests of sex allocation theory in a simultaneous hermaphrodite using phenotypic engineering

    Get PDF
    Sex allocation theory can provide successful predictions about how individuals allocate resources into male and female reproduction. However, in simultaneous hermaphrodites, experimental support for some fundamental aspects of sex allocation theory are, so far, limited, and many studies are conducted as correlational analyses without experimental trait manipulation. This limitation is especially true in animals, where gonads are usually internal, making it difficult to experimentally manipulate the traits of a specific sex function. Therefore in my PhD project I established and performed phenotypic engineering in the free-living simultaneous hermaphroditic flatworm Macrostomum lignano, and experimentally tested two fundamental aspects of sex allocation theory, namely a saturating male fitness gain curve and the existence of a trade-off between male and female allocation. First, in order to identify candidate genes that could be involved in sex allocation, I searched sex-specific genes based on existing gene annotations from other organisms using available gene sequence databases in M. lignano. Next, I examined gene expression patterns of such candidate genes using in situ hybridization. After confirming sex specificity, I knocked down gene expression using RNA interference (RNAi), enabling me to obtain a number of male-sterile phenotypes. In Chapter II, I report one of the identified testis-specific genes, named melav2, as an example of how to confirm sex specificity, an important aim for specific manipulation of one sex function in a simultaneous hermaphrodite. Having identified male-specific genes, I next investigated how the manipulation of sperm production using one of these genes impacts on male fitness. In sex allocation theory the shape of the fitness gain curve has an important role to predict optimal sex allocation. In many simultaneous hermaphrodites saturating male fitness gain curves are predicted, but studies experimentally testing this prediction are scarce. Therefore in Chapter III, I quantitatively manipulated sperm production using dose-dependent testis-specific RNAi knock-down of the macbol1 gene, and the results provide clear experimental evidence of a saturating male fitness gain curve in M. lignano, to my knowledge the first such evidence in copulating simultaneous hermaphrodites. Another fundamental but to date poorly supported assumption of sex allocation theory is the existence of a trade-off between male and female resource allocation. In theoretical models individuals are assumed to have a limited amount of reproductive resources, and an increase in allocation in one sex function necessarily leads to a decrease in the other sex function, imposing some constraints on the individual’s sex allocation decisions. In Chapter IV, in support of this assumption, I show that experimentally hindering spermatogenesis via testis-specific RNAi knock-down of the mac-C3H-zfn gene results in an increase in ovary size, as assumed by theory. In conclusion, my thesis provides experimental evidence for two fundamental aspects of sex allocation theory, namely a saturating male fitness gain curve and the existence of a trade-off between male and female allocation in a copulating simultaneous hermaphrodite. These two findings confirm an important theoretical prediction, namely that selection favors lower male allocation when there are diminishing male fitness returns and that freed reproductive resources can flow from the male to the female function

    Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits

    No full text
    Introduction RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits (“phenotypic engineering”) and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on existing functional gene annotation, which is usually limited in emerging model organisms, especially when they are only distantly related to traditional genetic model organisms. A case in point is the free-living flatworm Macrostomum lignano (Lophotrochozoa: Platyhelminthes: Rhabditophora), an increasingly powerful model organism for evolutionary studies of sex in simultaneous hermaphrodites. To overcome the limitation of sparse functional annotation, we have performed a positional RNA-Seq analysis on different body fragments in order to identify organ-specific candidate transcripts. We then performed gene expression (in situ hybridization) and gene function (RNAi) analyses on 23 candidate transcripts, both to evaluate the predictive potential of this approach and to obtain preliminary functional characterizations of these candidate genes. Results We identified over 4000 transcripts that could be expected to show specific expression in different reproductive organs (including testis, ovary and the male and female genital systems). The predictive potential of the method could then be verified by confirming organ-specific expression for several candidate transcripts, some of which yielded interesting trait-specific knock-down phenotypes that can now be followed up in future phenotypic engineering studies. Conclusions Our positional RNA-Seq analysis represents a highly useful resource for the identification of candidate transcripts for functional and phenotypic engineering studies in M. lignano, and it has already been used successfully in several studies. Moreover, this approach can overcome some inherent limitations of homology-based candidate selection and thus should be applicable to a broad range of emerging model organisms.ISSN:1742-999

    Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits

    Get PDF
    Introduction: RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits (“phenotypic engineering”) and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on existing functional gene annotation, which is usually limited in emerging model organisms, especially when they are only distantly related to traditional genetic model organisms. A case in point is the free-living flatworm Macrostomum lignano (Lophotrochozoa: Platyhelminthes: Rhabditophora), an increasingly powerful model organism for evolutionary studies of sex in simultaneous hermaphrodites. To overcome the limitation of sparse functional annotation, we have performed a positional RNA-Seq analysis on different body fragments in order to identify organ-specific candidate transcripts. We then performed gene expression (in situ hybridization) and gene function (RNAi) analyses on 23 candidate transcripts, both to evaluate the predictive potential of this approach and to obtain preliminary functional characterizations of these candidate genes. Results: We identified over 4000 transcripts that could be expected to show specific expression in different reproductive organs (including testis, ovary and the male and female genital systems). The predictive potential of the method could then be verified by confirming organ-specific expression for several candidate transcripts, some of which yielded interesting trait-specific knock-down phenotypes that can now be followed up in future phenotypic engineering studies. Conclusions: Our positional RNA-Seq analysis represents a highly useful resource for the identification of candidate transcripts for functional and phenotypic engineering studies in M. lignano, and it has already been used successfully in several studies. Moreover, this approach can overcome some inherent limitations of homology-based candidate selection and thus should be applicable to a broad range of emerging model organisms

    Fractionation of a sex-inducing substance from flatworms using open-column chromatography and reverse-phase high-performance liquid chromatography

    No full text
    Summary: A substance that sexualizes planarians, an ancestral group of parasitic flatworms, is widely present in planarians and parasitic flatworms. Here, we present a protocol for extracting and purifying the active fraction with sex-inducing activity. We describe steps for homogenization of flatworms, sample concentration, open-column chromatography, and reverse-phase high-performance liquid chromatography. We then detail a feeding bioassay to confirm sex-inducing activity. The obtained active fraction may positively affect parasitic flatworm sexual maturation and can be tested by adding it into the culture media.For complete details on the use and execution of this protocol, please refer to Sekii et al. (2023).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    A comprehensive comparison of sex-inducing activity in asexual worms of the planarian Dugesia ryukyuensis: the crucial sex-inducing substance appears to be present in yolk glands in Tricladida

    No full text
    Abstract Background Turbellarian species can post-embryonically produce germ line cells from pluripotent stem cells called neoblasts, which enables some of them to switch between an asexual and a sexual state in response to environmental changes. Certain low-molecular-weight compounds contained in sexually mature animals act as sex-inducing substances that trigger post-embryonic germ cell development in asexual worms of the freshwater planarian Dugesia ryukyuensis (Tricladida). These sex-inducing substances may provide clues to the molecular mechanism of this reproductive switch. However, limited information about these sex-inducing substances is available. Results Our assay system based on feeding sex-inducing substances to asexual worms of D. ryukyuensis is useful for evaluating sex-inducing activity. We used the freshwater planarians D. ryukyuensis and Bdellocephala brunnea (Tricladida), land planarian Bipalium nobile (Tricladida), and marine flatworm Thysanozoon brocchii (Polycladida) as sources of the sex-inducing substances. Using an assay system, we showed that the three Tricladida species had sufficient sex-inducing activity to fully induce hermaphroditic reproductive organs in asexual worms of D. ryukyuensis. However, the sex-inducing activity of T. brocchii was sufficient only to induce a pair of ovaries. We found that yolk glands, which are found in Tricladida but not Polycladida, may contain the sex-inducing substance that can fully sexualize asexual worms of D. ryukyuensis. Conclusions Our results suggest that within Tricladida, there are one or more common compounds or functional analogs capable of fully sexualizing asexual worms of D. ryukyuensis; namely, the crucial sex-inducing substance (hydrophilic and heat-stable, but not a peptide) produced in yolk glands
    corecore