568 research outputs found

    The Dual Meissner Effect and Magnetic Displacement Currents

    Full text link
    The dual Meissner effect is observed without monopoles in quenched SU(2)SU (2) QCD with Landau gauge-fixing. Magnetic displacement currents which are time-dependent Abelian magnetic fields play a role of solenoidal currents squeezing Abelian electric fields. Monopoles are not always necessary to the dual Meissner effect. The squeezing of the electric flux means the dual London equation and the massiveness of the Abelian electric fields as an asymptotic field. The mass generation of the Abelian electric fields is related to a gluon condensate ≠0\neq 0 of mass dimension 2.Comment: 4 pages, 5 Postscript figures, title modified, some references added, minor changes made ; Accepted for publication in Phys.Rev.Let

    Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics

    Get PDF
    Performing highly precise Monte-Carlo simulations of SU(2) gluodynamics, we observe for the first time Abelian dominance in the confining part of the static potential in local unitary gauges such as the F12 gauge. We also study the flux-tube profile between the quark and antiquark in these local unitary gauges and find a clear signal of the dual Meissner effect. The Abelian electric field is found to be squeezed into a flux tube by the monopole supercurrent. This feature is the same as that observed in the non-local maximally Abelian gauge. These results suggest that the Abelian confinement scenario is gauge independent. Observing the important role of space-like monopoles in the Polyakov gauge also indicates that the monopoles defined on the lattice do not necessarily correspond to those proposed by 't Hooft in the context of Abelian projection.Comment: 4 pages, 7 figure

    A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells

    Get PDF
    In mammals, sex differentiation depends on gonad development, which is controlled by two groups of sex-determining genes that promote one gonadal sex and antagonize the opposite one. SOX9 plays a key role during testis development in all studied vertebrates, whereas it is kept inactive in the XX gonad at the critical time of sex determination, otherwise, ovary-to-testis gonadal sex reversal occurs. However, molecular mechanisms underlying repression of Sox9 at the beginning of ovarian development, as well as other important aspects of gonad organogenesis, remain largely unknown. Because there is indirect evidence that micro-RNAs (miRNA) are necessary for testicular function, the possible involvement of miRNAs in mammalian sex determination deserved further research. Using microarray technology, we have identified 22 miRNAs showing sex-specific expression in the developing gonads during the critical period of sex determination. Bioinformatics analyses led to the identification of miR-124 as the candidate gene for ovarian development. We knocked down or overexpressed miR-124 in primary gonadal cell cultures and observed that miR-124 is sufficient to induce the repression of both SOX9 translation and transcription in ovarian cells. Our results provide the first evidence of the involvement of a miRNA in the regulation of the gene controlling gonad development and sex determination. The miRNA microarray data reported here will help promote further research in this field, to unravel the role of other miRNAs in the genetic control of mammalian sex determination

    Vacuum type of SU(2) gluodynamics in maximally Abelian and Landau gauges

    Get PDF
    The vacuum type of SU(2) gluodynamics is studied using Monte-Carlo simulations in maximally Abelian (MA) gauge and in Landau (LA) gauge, where the dual Meissner effect is observed to work. The dual Meissner effect is characterized by the coherence and the penetration lengths. Correlations between Wilson loops and electric fields are evaluated in order to measure the penetration length in both gauges. The coherence length is shown to be fixed in the MA gauge from measurements of the monopole density around the static quark-antiquark pair. It is also shown numerically that a dimension 2 gluon operator A^+A^-(s) and the monopole density has a strong correlation as suggested theoretically. Such a correlation is observed also between the monopole density and A^2(s)= A^+A^-(s) + A^3A^3(s) condensate if the remaining U(1) gauge degree of freedom is fixed to U(1) Landau gauge (U1LA). The coherence length is determined numerically also from correlations between Wilson loops and A^+A^-(s) and A^2(s) in MA + U1LA gauge. Assuming that the same physics works in the LA gauge, we determine the coherence length from correlations between Wilson loops and A^2(s). Penetration lengths and coherence lengths in the two gauges are almost the same. The vacuum type of the confinement phase in both gauges is near to the border between the type 1 and the type 2 dual superconductors.Comment: 13 pages, 22 figures, RevTeX 4 styl

    Ionospheric Response to the Total Solar Eclipse of 22 July 2009 as Deduced from VLBI and GPS Data

    Get PDF
    A total solar eclipse occurred over China at latitudes of about 30 N on the morning of 22 July 2009, providing a unique opportunity to investigate the influence of the sun on the earth's upper ionosphere. GPS observations from Shanghai GPS Local Network and VLBI observations from stations Shanghai, Urumqi, and Kashima were used to observe the response of TEC to the total solar eclipse. From the GPS data reduction, the sudden decrease of TEC at the time of the eclipse, amounting to 2.8 TECU, and gradual increase of TEC after the eclipse were found by analyzing the diurnal variations. More distinctly, the variations of TEC were studied along individual satellite passes. The delay in reaching the minimum level of TEC with the maximum phase of eclipse was 5-10 min. Besides, we also compared the ionospheric activity derived from different VLBI stations with the GPS results and found a strong correlation between them

    Venus Express radio occultation observed by PRIDE

    Get PDF
    Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASA's Deep Space Network (DSN), ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus' studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments

    Dual superconductivity and vacuum properties in Yang--Mills theories

    Get PDF
    We address, within the dual superconductivity model for color confinement, the question whether the Yang-Mills vacuum behaves as a superconductor of type I or type II. In order to do that we compare, for the theory with gauge group SU(2), the determination of the field penetration depth λ\lambda with that of the superconductor correlation length ξ\xi. The latter is obtained by measuring the temporal correlator of a disorder parameter developed by the Pisa group to detect dual superconductivity. The comparison places the vacuum close to the border between type I and type II and marginally on the type II side. We also check our results against the study of directly measurable effects such as the interaction between two parallel flux tubes, obtaining consistent indications for a weak repulsive behaviour. Future strategies to improve our investigation are discussed.Comment: 23 pages, 15 figures. Simulations on finer lattices and with different monopole charges added. Final version to be published in Nuclear Physics
    • …
    corecore