111 research outputs found

    Optimal Placement of TCSC Based on Sensitivity Analysis for Congestion Management

    Get PDF
    In a deregulated electricity market whenever congestion management problem occurs, the network collapse because of voltage instability. In this paper total real and reactive power loss deviation based sensitivity indexes (PLDS and QLDS) with rank co-relation concept, has been proposed for the optimal location and operating range of TCSC device. With this placement  the power flow in over loaded overhead lines has been reduced and that results in an increased loadability of the power system and also improves the voltage stability and security and also solves the congestion management problem. So ultimately, a more energy efficient transmission system is possible. The case studies were conducted on IEEE 14 bus test system. The ensue corroborate the intended approach for social welfare maximization inreal time

    Resonant Raman of OH/OD vibrations and photoluminescence studies in LiTaO3 thin film

    Get PDF
    Resonant Raman spectra (RRS) of O-H and O-D vibration and libration modes, their combinations and higher harmonics have been observed in LiTaO3 polycrystalline thin films. RRS peaks are superimposed on photoluminescence (PL) spectrum. Monochromatic light from a xenon lamp is used as excitation source. PL spectrum shows two broad peaks, first near the band gap in UV (4.4-4.8eV) and another in the sub band gap region (< 4.0 eV). Band gap PL along with RRS peaks are reported for the first time. Photoluminescence excitation spectrum (PLE) shows a peak at 4.8 eV. Peak positions and full width at half maximum (FWHM) of RRS peaks depend upon the excitation energy. Dispersions of the fundamental and the third harmonic of the stretching mode of O-H with excitation energy are about 800 cm-1/eV and 2000 cm-1/eV respectively. This dispersion is much higher than reported in any other material.Comment: 20 page

    Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon

    Get PDF
    Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N2), carbon monoxide (CO), methane (CH4) and water (H2O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H2O were recorded and no significant changes in the spectra due to presence of H2O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH3) and H2O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH4OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons

    Adaptive PVD Steganography Using Horizontal, Vertical, and Diagonal Edges in Six-Pixel Blocks

    Get PDF
    The traditional pixel value differencing (PVD) steganographical schemes are easily detected by pixel difference histogram (PDH) analysis. This problem could be addressed by adding two tricks: (i) utilizing horizontal, vertical, and diagonal edges and (ii) using adaptive quantization ranges. This paper presents an adaptive PVD technique using 6-pixel blocks. There are two variants. The proposed adaptive PVD for 2×3-pixel blocks is known as variant 1, and the proposed adaptive PVD for 3×2-pixel blocks is known as variant 2. For every block in variant 1, the four corner pixels are used to hide data bits using the middle column pixels for detecting the horizontal and diagonal edges. Similarly, for every block in variant 2, the four corner pixels are used to hide data bits using the middle row pixels for detecting the vertical and diagonal edges. The quantization ranges are adaptive and are calculated using the correlation of the two middle column/row pixels with the four corner pixels. The technique performs better as compared to the existing adaptive PVD techniques by possessing higher hiding capacity and lesser distortion. Furthermore, it has been proven that the PDH steganalysis and RS steganalysis cannot detect this proposed technique

    Real Time Automatic Number Plate Recognition Using Morphological Algorithm

    Get PDF
    The rising increase of up to date urban and national road networks over the last three decades become known the need of capable monitoring and management of road traffic. Expected techniques for traffic measurements, such as inductive loops, sensors or EM microwave detectors, endure from sober shortcomings, luxurious to install, they demand traffic distraction during installation or maintenance, they are massive and they are unable to notice slow or momentary stop vehicles. On the divergent, systems that are based on video are simple to install, use the existing infrastructure of traffic observation. Currently most reliable method is through the detection of number plates, i.e., automatic number plate recognition (ANPR), which is also branded as automatic license plate recognition (ALPR), or radio frequency transponders. The first revalent step of information is finding of moving objects in video streams and background subtraction is a very accepted approach for foreground segmentation. Next step is License plate extraction which is an essential stage in license plate recognition for automatic transport system. We are planned for two ways for removal of license plates and comparing it with other existing methods. The Extracted license plates are segmented into particular characters by means of a region-based manner. The recognition scheme unites adaptive iterative thresholding with a template matching algorithm. The method is strong to illumination, character size and thickness, skew and small character breaks. The main reward of this system is its real-time capability and that it does not require any extra sensor input (e.g. from infrared sensors) except a video stream. This system is judged on a huge number of vehicle images and videos. The system is also computationally extremely efficient and it is appropriate for others related image recognition applications. This system has broad choice of applications such as access control, ringing, border patrol, traffic control, finding stolen cars, etc. Furthermore, this technology does not need any fitting on cars, such as transmitter or responder

    Object Detection from a Vehicle Using Deep Learning Network and Future Integration with Multi-Sensor Fusion Algorithm

    Get PDF
    Accuracy in detecting a moving object is critical to autonomous driving or advanced driver assistance systems (ADAS). By including the object classification from multiple sensor detections, the model of the object or environment can be identified more accurately. The critical parameters involved in improving the accuracy are the size and the speed of the moving object. All sensor data are to be used in defining a composite object representation so that it could be used for the class information in the core object’s description. This composite data can then be used by a deep learning network for complete perception fusion in order to solve the detection and tracking of moving objects problem. Camera image data from subsequent frames along the time axis in conjunction with the speed and size of the object will further contribute in developing better recognition algorithms. In this paper, we present preliminary results using only camera images for detecting various objects using deep learning network, as a first step toward multi-sensor fusion algorithm development. The simulation experiments based on camera images show encouraging results where the proposed deep learning network based detection algorithm was able to detect various objects with certain degree of confidence. A laboratory experimental setup is being commissioned where three different types of sensors, a digital camera with 8 megapixel resolution, a LIDAR with 40m range, and ultrasonic distance transducer sensors will be used for multi-sensor fusion to identify the object in real-time

    Dispersion of Resonant Raman Peaks of CO and OH in SnO2, Mo1-x FexO2 Thin Films and SiO2 bulk glass

    Full text link
    Resonance Raman (RR) peaks of and stretching modes and their higher harmonics have been observed superimposed on photoluminescence (PL) spectrum of thin films. Commercial fluorine doped thin films deposited by sputtering on glass and thin films deposited on Si by laser ablation have been studied. The dispersions of CO and OH stretching RR modes are ~ 600 cm-1/eV and 800 cm-1 respectively. The dispersion of the third harmonic of CO stretching mode is ~ 2000 cm-1/eV. Similar dispersion of RR peak of stretching modes and higher harmonics superimposed on PL spectra has been observed in Mo1-xFexO2 thin films and SiO2 bulk glass. Large dispersion of RR peaks seems to be a common property of oxides with impurities of and .Comment: 13 pages including three figure

    DAMPING ANALYSIS TO IMPROVE THE PERFORMANCE OF SHUNT CAPACITIVE RF MEMS SWITCH

    Get PDF
    This paper describes the significance of the iterative approach and the structure damping analysis which help to get better the performance and validation of shunt capacitive RF MEMS switch. The micro-cantilever based electrostatic ally actuated shunt capacitive RF MEMS switch is designed and after multiple iterations on cantilever structure a modification of the structure is obtained that requires low actuation voltage of 7.3 V for 3 µm deformation. To validate the structure we have performed the damping analysis for each iteration. The low actuation voltage is a consequence of identifying the critical membrane thickness of 0.7 µm, and incorporating two slots and holes into the membrane. The holes to the membrane help in stress distribution. We performed the Eigen frequency analysis of the membrane. The RF MEMS switch is micro machined on a CPW transmission line with Gap-Strip-Gap (G-S-G) of 85 µm - 70 µm - 85 µm. The switch RF isolation properties are analyzed with high dielectric constant thin films i.e., AlN, GaAs, and HfO2. For all the dielectric thin films the RF MEMS switch shows a high isolation of -63.2 dB, but there is shift in the radio frequency. Because of presence of the holes in the membrane the switch exhibits a very low insertion loss of -0.12 dB

    Effects of Performance on Mechanical properties of Sawdust/Carbon Fibre Reinforced Polymer matrix Hybrid Composites

    Get PDF
    ABSTRACT. Short carbon fibre (CF) and sawdust (SD) were dispersed in to the epoxy (EP) matrix in order to manufacture polymer hybrid composites using compression moulding technique. The mechanical properties of flexural properties of hybrid, compression moulded, chopped CF/SD/epoxy composites have been investigated taking into account the effect of hybridization by these two fillers. Hybridization with small amounts of SD makes these CF composites more suitable for technical applications. The simultaneous compounding of epoxy with two fillers was done to obtain a hybrid composite. This system is expected to have considerable mechanical properties, good surface finish and low cost. It has been found that the tensile properties of filled epoxy were higher than unfilled epoxy. By incorporating up to 30% (by mass) Carbon fiber (CF) and 10% sawdust (SD) namely S 3 sample flexural strength was increased by 12.5%. Thus it is shown that the durability of CF/SD filled epoxy composites can be enhanced by hybridization with small amount of CF. The hybrid effects of the flexural strength and modulus were studied by the rule of hybrid mixture
    corecore