9 research outputs found

    Gel Shift Analysis of the empA Promoter Region in \u3cem\u3eVibrio Anguillarum\u3c/em\u3e

    Get PDF
    Background: The induction of metalloprotease encoded by empA in Vibrio anguillarum occurs at high cell density in salmon intestinal mucus. Previously we have shown that there are significant differences in empA expression in two strains of V. anguillarum, M93Sm and NB10. It is hypothesized that differences in empA regulation are due to differences in binding of regulatory elements. Results: Two strains of V. anguillarum, M93Sm and NB10, were examined and compared for the presence of DNA regulatory proteins that bind to and control the empA promoter region. Gel mobility shift assays, using a digoxigenin (DIG)-labeled oligomer containing a lux box-like element and the promoter for empA, were done to demonstrate the presence of a DNA-binding protein. Protein extracts from NB10 cells incubated in Luria Bertani broth + 2% NaCl (LB20), nine salts solution + 200 μg/ml mucus (NSSM), 3M (marine minimal medium), or NSS resulted in a gel mobility shift. No gel mobility shift was seen when protein extracts from either LB20- or NSSMgrown M93Sm cells were mixed with the DIG-labeled empA oligomer. The azocasein assay detected protease activity in all incubation conditions for NB10 culture supernatants. In contrast, protease activity was detected in M93Sm culture supernatants only when incubated in NSSM. Since the luxR homologue in V. anguillarum, vanT, has been cloned, sequenced, and shown to be required for protease activity, we wanted to determine if vanT mutants of NB10 exhibit the same gel shift observed in the wild-type. Site-directed mutagenesis was used to create vanT mutants in V. anguillarum M93Sm and NB10 to test whether VanT is involved with the gel mobility shift. Both vanT mutants, M02 and NB02, did not produce protease activity in any conditions. However, protein extracts from NB02 incubated in each condition still exhibited a gel shift when mixed with the DIG-labeled empA oligomer. Conclusions: The data demonstrate that protein extracts of V. anguillarum NB10 cells contain a protein that binds to a 50 bp oligomer containing the empA promoter-lux box-like region. NB10 cells express empA during stationary phase in all growth conditions. The DNA binding protein is not present in M93Sm extracts. M93Sm cells express protease activity only when incubated at high cell density in fish gastrointestinal mucus. The gel shift observed with NB10 cells is not due to VanT binding. The data also suggest that the DNA binding protein is responsible for the less restrictive expression of empA in NB10 compared to M93Sm

    Gel shift analysis of the empA promoter region in Vibrio anguillarum

    Get PDF
    BACKGROUND: The induction of metalloprotease encoded by empA in Vibrio anguillarum occurs at high cell density in salmon intestinal mucus. Previously we have shown that there are significant differences in empA expression in two strains of V. anguillarum, M93Sm and NB10. It is hypothesized that differences in empA regulation are due to differences in binding of regulatory elements. RESULTS: Two strains of V. anguillarum, M93Sm and NB10, were examined and compared for the presence of DNA regulatory proteins that bind to and control the empA promoter region. Gel mobility shift assays, using a digoxigenin (DIG)-labeled oligomer containing a lux box-like element and the promoter for empA, were done to demonstrate the presence of a DNA-binding protein. Protein extracts from NB10 cells incubated in Luria Bertani broth + 2% NaCl (LB20), nine salts solution + 200 μg/ml mucus (NSSM), 3M (marine minimal medium), or NSS resulted in a gel mobility shift. No gel mobility shift was seen when protein extracts from either LB20- or NSSM-grown M93Sm cells were mixed with the DIG-labeled empA oligomer. The azocasein assay detected protease activity in all incubation conditions for NB10 culture supernatants. In contrast, protease activity was detected in M93Sm culture supernatants only when incubated in NSSM. Since the luxR homologue in V. anguillarum, vanT, has been cloned, sequenced, and shown to be required for protease activity, we wanted to determine if vanT mutants of NB10 exhibit the same gel shift observed in the wild-type. Site-directed mutagenesis was used to create vanT mutants in V. anguillarum M93Sm and NB10 to test whether VanT is involved with the gel mobility shift. Both vanT mutants, M02 and NB02, did not produce protease activity in any conditions. However, protein extracts from NB02 incubated in each condition still exhibited a gel shift when mixed with the DIG-labeled empA oligomer. CONCLUSIONS: The data demonstrate that protein extracts of V. anguillarum NB10 cells contain a protein that binds to a 50 bp oligomer containing the empA promoter-lux box-like region. NB10 cells express empA during stationary phase in all growth conditions. The DNA binding protein is not present in M93Sm extracts. M93Sm cells express protease activity only when incubated at high cell density in fish gastrointestinal mucus. The gel shift observed with NB10 cells is not due to VanT binding. The data also suggest that the DNA binding protein is responsible for the less restrictive expression of empA in NB10 compared to M93Sm

    hAda3 Degradation by Papillomavirus Type 16 E6 Correlates with Abrogation of the p14ARF-p53 Pathway and Efficient Immortalization of Human Mammary Epithelial Cellsâ–¿

    Get PDF
    Two activities of human papillomavirus type 16 E6 (HPV16 E6) are proposed to contribute to the efficient immortalization of human epithelial cells: the degradation of p53 protein and the induction of telomerase. However, the requirement for p53 inactivation has been debated. Another E6 target is the hAda3 protein, a p53 coactivator and a component of histone acetyltransferase complexes. We have previously described the role of hAda3 and p53 acetylation in p14ARF-induced human mammary epithelial cell (MEC) senescence (P. Sekaric, V. A. Shamanin, J. Luo, and E. J. Androphy, Oncogene 26:6261-6268, 2007). In this study, we analyzed a set of HPV16 E6 mutants for the ability to induce hAda3 degradation. E6 mutants that degrade hAda3 but not p53 could abrogate p14ARF-induced growth arrest despite the presence of normal levels of p53 and efficiently immortalized MECs. However, two E6 mutants that previously were reported to immortalize MECs with low efficiency were found to be defective for both p53 and hAda3 degradation. We found that these immortal MECs select for reduced p53 protein levels through a proteasome-dependent mechanism. The findings strongly imply that the inactivation of the p14ARF-p53 pathway, either by the E6-mediated degradation of p53 or hAda3 or by cellular adaptation, is required for MEC immortalization

    Binding of Human Papillomavirus Type 16 E6 to E6AP Is Not Required for Activation of hTERTâ–¿

    Get PDF
    The human papillomavirus (HPV) type 16 (HPV16) E6 protein stimulates transcription of the catalytic subunit of telomerase, hTERT, in epithelial cells. It has been reported that binding to the ubiquitin ligase E6AP is required for this E6 activity, with E6 directing E6AP to the hTERT promoter. We previously reported two E6AP binding-defective HPV16 E6 mutations that induced immortalization of human mammary epithelial cells. Because activation of hTERT is proposed to be necessary for epithelial cell immortalization, we sought to further characterize the relationship between E6/E6AP association and telomerase induction. We demonstrate that while these E6 mutants do not bind E6AP, they retain the capability to stimulate the expression of hTERT. Chromatin immunoprecipitation assays confirmed the presence of Myc, wild-type E6, and the E6AP binding-defective E6 mutants, but not E6AP itself, at the endogenous hTERT promoter. Interestingly, an immortalization-defective E6 mutant localized to the hTERT promoter but failed to increase transcription. We conclude that binding to E6AP is not necessary for E6 localization to or activation of the hTERT promoter and that another activity of E6 is involved in hTERT activation

    Cells were grown for 16 h in LB20 at 27°C, harvested by centrifugation, washed twice in NSS, and resuspended at 2 × 10CFU/ml in each condition

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Gel shift analysis of the promoter region in "</p><p>BMC Microbiology 2004;4():42-42.</p><p>Published online 29 Oct 2004</p><p>PMCID:PMC529440.</p><p>Copyright © 2004 Denkin et al; licensee BioMed Central Ltd.</p> Samples were taken at the indicated times and cell-free supernatant was tested for protease activity using the azocasein assay. Both of the experiments shown represent a single experiment, although each experiment was repeated at least three times with similar results

    Cells were grown overnight in LB20, washed twice in NSS, and resuspended in either LB20 or NSSM at 2 × 10CFU/ml

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Gel shift analysis of the promoter region in "</p><p>BMC Microbiology 2004;4():42-42.</p><p>Published online 29 Oct 2004</p><p>PMCID:PMC529440.</p><p>Copyright © 2004 Denkin et al; licensee BioMed Central Ltd.</p> RNA from LB20- (L) and NSSM- (M) grown cells was prepared and used in RT-PCR reactions. RNA was extracted from cells at 0 h and 3 h after resuspension. As a positive control, PCR was performed on DNA from M93Sm (lane A) and NB10 (lane B). As a negative control, RT was omitted from the reaction containing RNA samples; a representative result is shown in lane C. The PCR and RT-PCR products were visualized on a 1% agarose TAE gel containing ethidium bromide. Molecular weight standard (indicated in kilobase pairs) are in lane S. The data presented are representative of three replicate experiments
    corecore