163 research outputs found
Dynamical and photometric investigation of cometary type 2 tails
Photographic observations of the antitail of Comet Kohoutek (1973f) are photometrically studied and the results compared with the working model of an antitail. The applied technique of photometric reduction is described and the radial and transverse profiles of the antitail, corrected for the effects of the variable intensity of the sky background, are derived. The most important result reached so far is a quantitative confirmation of the previously suggested hypothesis, arguing that dust particles in the antitail suffered a significant loss in radius due to evaporation near the perihelion passage. Only particles initially larger than 0.1 to 0.15 mm in diameter survived. Numerically, however, this result is still tentative, because the dynamical effect exerted by particle evaporation remains to be accounted for
Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies
Population parameters of 275 streams including 20 additional streams in the synoptic-year sample were found by a computer technique. Some 16 percent of the sample is in these streams. Four meteor streams that have close orbital resemblance to Adonis cannot be positively identified as meteors ejected by Adonis within the last 12000 years. Ceplecha's discrete levels of meteor height are not evident in radar meteors. The spread of meteoroid fragments along their common trajectory was computed for most of the observed radar meteors. There is an unexpected relationship between spread and velocity that perhaps conceals relationships between fragmentation and orbits; a theoretical treatment will be necessary to resolve these relationships. Revised unbiased statistics of synoptic-year orbits are presented, together with parallel statistics for the 1961 to 1965 radar meteor orbits
Physical and dynamical studies of meteors
Distribution of meteors in streams detected in the synoptic-year meteor sample plus a study of the fragmentation characteristics of the synoptic-year meteor sample are presented. Population coefficients and dispersion coefficients were determined for each meteor stream. These two parameters serve to determine the number of definite members of the stream in the sample used, and to estimate the actual space density of meteor streams. From results of the fragmentation study, it appears that the main body of most radar meteors does not ablate fragments layer by layer, but collapses rather suddenly under dynamic pressures on the order of 0,0002 dynes/cm. Furthermore, it is believed that fragmentation does not cause a serious selection effect in the radar meteor data
Dynamical and photometric investigation of comets
The findings of dynamic and photometric investigations of comets are summarized, and include discussions of the comets Bennett 1970 II, Kohoutek 1973f, West 1976 VI, and periodic comets d'Arrest, Encke, and Swift Tuttle. The phenomena examined include striated and anomalous tails, tail composition and the dynamics of vaporizing dust particles, the evolution of dust jets, and split and dissipating comets
Dynamical and photometric investigation of cometary type 2 tails
The absolute calibration of the photometric profile of the antitail of Comet Kohoutek 1973 XII on plates taken with the Curtis Schmidt telescope of the University of Michigan at the Cerro Tololo Inter-American Observatory is described in detail. The formula for the determination of the air mass, and the correction for atmospheric absorption and for the loss of light due to vignetting are included. The calibration stars were used to derive the coefficients converting the relative intensity scale to the absolute surface-brightness units. The extensive results of the study of the orbital evolution of vaporizing dust particles are listed in a tabular form. Gradual evaporation from the surface of a particle results typically in its expulsion from the solar system. The properties of the particle and the elements of its orbit at expulsion are given as functions of the particle's properties and orbit before appreciable evaporation commenced. Also given are circumstances at an encounter of an expelled particle with the earth as a function of the particle's properties. A few specific cases are represented graphically
A continuing controversy: Has the cometary nucleus been resolved?
Evidence is presented for classifying cometary nuclei into two basic types, described by core mantle and coreless models. Mass loss related nongravitational effects in a comet's motion as a function of time are included in considering gradual evaporation of an icy envelope surrounding the meteoric matrix in the core of the nucleus
Progress in our understanding of cometary dust tails
Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma
The study of the physics of cometary nuclei
A semiannual progress report describing the work completed during the period 1 September 1975 to 29 February 1976 on the physics of cometary nuclei was given. The following items were discussed: (1) a paper entitled ""A speculation about comets and the earth'', (2) a chapter entitled"" The physics of comets'' for ""Reviews of Astronomy and Astrophysics'', (3) continuing work on split comets, and (4) results dealing with a new application of nongravitational solar-radial forces as a measure of comet nucleus dimensions and activity
The Scattered Disk as the source of the Jupiter Family comets
The short period Jupiter family comets (JFCs) are thought to originate in the
Kuiper Belt; specifically, a dynamical subclass of the Kuiper Belt known as the
`scattered disk' is argued to be the dominant source of JFCs. However, the best
estimates from observational surveys indicate that this source may fall short
by more than two orders of magnitude the estimates obtained from theoretical
models of the dynamical evolution of Kuiper belt objects into JFCs. We
re-examine the scattered disk as a source of the JFCs and make a rigorous
estimate of the discrepancy. We find that the uncertainties in the dynamical
models combined with a change in the size distribution function of the
scattered disk at faint magnitudes (small sizes) beyond the current
observational limit offer a possible but problematic resolution to the
discrepancy. We discuss several other possibilities: that the present
population of JFCs is a large fluctuation above their long term average, that
larger scattered disk objects tidally break-up into multiple fragments during
close planetary encounters as their orbits evolve from the trans-Neptune zone
to near Jupiter, or that there are alternative source populations that
contribute significantly to the JFCs. Well-characterized observational
investigations of the Centaurs, objects that are transitioning between the
trans-Neptune Kuiper belt region and the inner solar system, can test the
predictions of the non-steady state and the tidal break-up hypotheses. The
classical and resonant classes of the Kuiper belt are worth re-consideration as
significant additional or alternate sources of the JFCs.Comment: 33 pages, 6 figures. Revised Content. To be published in The
Astrophysical Journa
Approximate Circuits in Low-Power Image and Video Processing: The Approximate Median Filter
Low power image and video processing circuits are crucial in many applications of computer vision. Traditional techniques used to reduce power consumption in these applications have recently been accompanied by circuit approximation methods which exploit the fact that these applications are highly error resilient and, hence, the quality of image processing can be traded for power consumption. On the basis of a literature survey, we identified the components whose implementations are the most frequently approximated and the methods used for obtaining these approximations. One of the components is the median image filter. We propose, evaluate and compare two approximation strategies based on Cartesian genetic programming applied to approximate various common implementations of the median filter. For filters developed using these approximation strategies, trade-offs between the quality of filtering and power consumption are investigated. Under conditions of our experiments we conclude that better trade-offs are achieved when the image filter is evolved from scratch rather than a conventional filter is approximated
- …