19 research outputs found

    Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking

    Full text link
    Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models. However, there has been little work on interpreting them, and specifically on understanding which parts of the graphs (e.g. syntactic trees or co-reference structures) contribute to a prediction. In this work, we introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges. Given a trained GNN model, we learn a simple classifier that, for every edge in every layer, predicts if that edge can be dropped. We demonstrate that such a classifier can be trained in a fully differentiable fashion, employing stochastic gates and encouraging sparsity through the expected L0L_0 norm. We use our technique as an attribution method to analyze GNN models for two tasks -- question answering and semantic role labeling -- providing insights into the information flow in these models. We show that we can drop a large proportion of edges without deteriorating the performance of the model, while we can analyse the remaining edges for interpreting model predictions

    Trans-Arctic asymmetries, melting pots and weak species cohesion in the low-dispersal amphiboreal seaweed Fucus distichus

    Get PDF
    Amphiboreal taxa are often composed of vicariant phylogroups and species complexes whose divergence and phylogeographic affinities reflect a shared history of chronic isolation and episodic trans-Arctic dispersal. Ecological filters and shifting selective pressures may also promote selective sweeps, niche shifts and ecological speciation during colonization, but these are seldom considered at biogeographical scales. Here we integrate genetic data and Ecologic Niche Models (ENMs) to investigate the historical biogeography and cohesion of the polymorphic rockweed Fucus distichus throughout its immense amphiboreal range, focusing on trans-Arctic asymmetries, glacial/interglacial dynamics, and integrity of sympatric eco-morphotypes. Populations were sampled throughout the Pacific and the Atlantic, from southern rear-edges to the high-Arctic. They were genotyped for seven microsatellites and an mtDNA spacer, and genetic diversity and structure were assessed from global to local scales. ENMs were used to compare niche divergence and magnitude of post-glacial range shifts in Pacific versus Atlantic sub-ranges. Haplotypic and genotypic data revealed distinct and seemingly isolated Pacific vs Arctic/Atlantic gene-pools, with finer-scale regional sub-structuring pervasive in the Pacific. MtDNA diversity was highly structured and overwhelmingly concentrated in the Pacific. Regionally, Alaska showed the highest intra-population diversity but the lowest levels of endemism. Some sympatric/parapatric ecotypes exhibited distinct genotypic/ haplotypic compositions. Strikingly, niche models revealed higher Pacific tolerance to maximum temperatures and predicted a much more consolidated presence in the NE Atlantic. Glacial and modern ranges overlapped extensively in the Pacific, whereas the modern Atlantic range was largely glaciated or emerged during the Last Glacial Maximum. Higher genetic and ecogeographic diversity supports a primary Pacific diversification and secondary Atlantic colonization, also likely reflecting the much larger and more stable climatic refugia in the Pacific. The relic distribution and reduced ecological/morphological plasticity in the NE Atlantic are hypothesized to reflect functional trans-Arctic bottlenecks, recent colonization or competition with congeners. Within the Pacific, Alaska showed signatures of a post-glacial melting pot of eastern and southern populations. Genetic/ecotypic variation was generally not sufficiently discontinuous or consistent to justify recognizing multiple taxonomic entities, but support a separate species in the eastern Pacific, at the southern rear-edge. We predict that layered patterns of phylogeographic structure, incipient speciation and niche differences might be common among widespread low-dispersal amphiboreal taxa

    Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas

    Get PDF
    Although knowledge of Arctic seas has increased tremendously in the past decade, benthic diversity was investigated at regional scales only, and no attempt had been made to examine it across the entire Arctic. We present a first pan-Arctic account of the species diversity of the macro- and megabenthic fauna of the Arctic marginal shelf seas. It is based on an analysis of 25 published and unpublished species-level data sets, together encompassing 14 of the 19 marine Arctic shelf ecoregions and comprising a total of 2636 species, including 847 Arthropoda, 668 Annelida, 392 Mollusca, 228 Echinodermata, and 501 species of other phyla. For the four major phyla, we also analyze the differences in faunal composition and diversity among the ecoregions. Furthermore, we compute gross estimates of the expected species numbers of these phyla on a regional scale. Extrapolated to the entire fauna and study area, we arrive at the conservative estimate that 3900 to 4700 macro- and megabenthic species can be expected to occur on the Arctic shelves. These numbers are smaller than analogous estimates for the Antarctic shelf but the difference is on the order of about two and thus less pronounced than previously assumed. On a global scale, the Arctic shelves are characterized by intermediate macro- and megabenthic species numbers. Our preliminary pan-Arctic inventory provides an urgently needed assessment of current diversity patterns that can be used by future investigations for evaluating the effects of climate change and anthropogenic activities in the Arctic

    Climate change effects on Arctic fjord and coastal macrobenthic diversity-observations and predictions

    No full text
    Abstract The pattern of occurrence and recent changes in the distribution of macrobenthic organisms in fjordic and coastal (nearshore) Arctic waters are reviewed and future changes are hypothesized. The biodiversity patterns observed are demonstrated to be contextual, depending on the specific region of the Arctic or habitat type. Two major areas of biotic advection are indicated (the North Atlantic Current along Scandinavia to Svalbard and the Bering Strait area) where larvae and adult animals are transported from the species-rich sub-Arctic areas to species-poor Arctic areas. In those Arctic areas, increased temperature associated with increased advection in recent decades brings more boreal-subarctic species, increasing the local biodiversity when local cold-water species may be suppressed. Two other large coastal areas are little influenced by advected waters; the Siberian shores and the coasts of the Canadian Archipelago. There, local Arctic fauna are exposed to increasing ocean temperature, decreasing salinity and a reduction in ice cover with unpredictable effect for biodiversity. One the one hand, benthic species in Arctic fjords are exposed to increased siltation (from glacial meltwater) and salinity decreases, which together may lead to habitat homogenization and a subsequent decrease in biodiversity. On the other hand, the innermost basins of Arctic fjords are able to maintain pockets of very cold, dense, saline water and thus may act as refugia for coldwater species

    Quantitative flow ratio for immediate assessment of nonculprit lesions in patients with ST‐segment elevation myocardial infarction—An iSTEMI substudy

    No full text
    Objectives: We evaluated the diagnostic performance of quantitative flow ratio (QFR) assessment of nonculprit lesions (NCLs) based on acute setting angiograms obtained in patients with ST-segment elevation myocardial infarction (STEMI) with QFR, fractional flow reserve (FFR), and instantaneous wave-free ratio (iFR) in the staged setting as reference. Background: QFR is an angiography-based approach for the functional evaluation of coronary artery lesions. Methods: This was a post-hoc analysis of the iSTEMI study. NCLs were assessed with iFR in the acute setting and with iFR and FFR at staged (median 13 days) follow-up. Acute and staged QFR values were computed in a core laboratory based on the coronary angiography recordings. Diagnostic cut-off values were ≤0.80 for QFR and FFR, and ≤0.89 for iFR. Results: Staged iFR and FFR data were available for 146 NCLs in 112 patients in the iSTEMI study. Among these, QFR analysis was feasible in 103 (71%) lesions assessed in the acute setting with a mean QFR value of 0.82 (IQR: 0.73–0.91). Staged QFR, FFR, and iFR were 0.80 (IQR: 0.70–0.90), 0.81 (IQR: 0.71–0.88), and 0.91 (IQR: 0.87–0.96), respectively. Classification agreement of acute and staged QFR was 93% (95%Cl: 87–99). The classification agreement of acute QFR was 84% (95%CI: 76–90) using staged FFR as reference and 74% (95%CI: 65–83) using staged iFR as reference. Conclusions: Acute QFR showed a very good diagnostic performance with staged QFR as reference, a good diagnostic performance with staged FFR as reference, and a moderate diagnostic performance with staged iFR as reference
    corecore