11 research outputs found

    Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord

    Get PDF
    The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification, and large-scale assessments of pH and the saturation state for aragonite (O<sub>arag</sub>) have led to the notion that the Arctic Ocean is already close to a corrosive state. In high-latitude coastal waters the regulation of pH and O<sub>arag</sub> is, however, far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. Effects of ocean acidification on calcifiers and non-calcifying phototrophs occupying coastal habitats cannot be derived from extrapolation of current and forecasted offshore conditions, but they require an understanding of the regimes of pH and O<sub>arag</sub> in their coastal habitats. To increase knowledge of the natural variability in pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH variability in a Greenland fjord in a nested-scale approach. A sensor array logging pH, O<sub>2</sub>, PAR, temperature and salinity was applied on spatial scales ranging from kilometre scale across the horizontal extension of the fjord; to 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores; and to centimetre to metre scale within kelp forests and millimetre scale across diffusive boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH measurements combined with point samples of total alkalinity, dissolved inorganic carbon and relationships to salinity, we also estimated variability in O<sub>arag</sub>. Results show variability in pH and O<sub>arag</sub> of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m<sup>3</sup> of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of &gt; 1.5 units and macrophyte diffusive boundary layers a pH range of up to 0.8 units. Overall, pelagic and benthic metabolism was an important driver of pH and O<sub>arag</sub> producing mosaics of variability from low levels in the dark to peak levels at high irradiance generally appearing favourable for calcification. We suggest that productive coastal environments may form niches of high pH in a future acidified Arctic Ocean

    Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community composition, and DOM pools in a NE Greenland fjord

    Get PDF
    Increasing glacial discharge can lower salinity and alter organic matter (OM) supply in fjords, but assessing the biogeochemical effects of enhanced freshwater fluxes requires understanding of microbial interactions with OM across salinity gradients. Here, we examined microbial enzymatic capabilities—in bulk waters (nonsize-fractionated) and on particles (≥ 1.6 μm)—to hydrolyze common OM constituents (peptides, glucose, polysaccharides) along a freshwater–marine continuum within Tyrolerfjord-Young Sound. Bulk peptidase activities were up to 15-fold higher in the fjord than in glacial rivers, whereas bulk glucosidase activities in rivers were twofold greater, despite fourfold lower cell counts. Particle-associated glucosidase activities showed similar trends by salinity, but particle-associated peptidase activities were up to fivefold higher—or, for several peptidases, only detectable—in the fjord. Bulk polysaccharide hydrolase activities also exhibited freshwater–marine contrasts: xylan hydrolysis rates were fivefold higher in rivers, while chondroitin hydrolysis rates were 30-fold greater in the fjord. Contrasting enzymatic patterns paralleled variations in bacterial community structure, with most robust compositional shifts in river-to-fjord transitions, signifying a taxonomic and genetic basis for functional differences in freshwater and marine waters. However, distinct dissolved organic matter (DOM) pools across the salinity gradient, as well as a positive relationship between several enzymatic activities and DOM compounds, indicate that DOM supply exerts a more proximate control on microbial activities. Thus, differing microbial enzymatic capabilities, community structure, and DOM composition—interwoven with salinity and water mass origins—suggest that increased meltwater may alter OM retention and processing in fjords, changing the pool of OM supplied to coastal Arctic microbial communities

    Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community composition, and DOM pools in a NE Greenland fjord

    Get PDF
    Increasing glacial discharge can lower salinity and alter organic matter (OM) supply in fjords, but assessing the biogeochemical effects of enhanced freshwater fluxes requires understanding of microbial interactions with OM across salinity gradients. Here, we examined microbial enzymatic capabilities—in bulk waters (nonsize-fractionated) and on particles (≥ 1.6 μm)—to hydrolyze common OM constituents (peptides, glucose, polysaccharides) along a freshwater–marine continuum within Tyrolerfjord-Young Sound. Bulk peptidase activities were up to 15-fold higher in the fjord than in glacial rivers, whereas bulk glucosidase activities in rivers were twofold greater, despite fourfold lower cell counts. Particle-associated glucosidase activities showed similar trends by salinity, but particle-associated peptidase activities were up to fivefold higher—or, for several peptidases, only detectable—in the fjord. Bulk polysaccharide hydrolase activities also exhibited freshwater–marine contrasts: xylan hydrolysis rates were fivefold higher in rivers, while chondroitin hydrolysis rates were 30-fold greater in the fjord. Contrasting enzymatic patterns paralleled variations in bacterial community structure, with most robust compositional shifts in river-to-fjord transitions, signifying a taxonomic and genetic basis for functional differences in freshwater and marine waters. However, distinct dissolved organic matter (DOM) pools across the salinity gradient, as well as a positive relationship between several enzymatic activities and DOM compounds, indicate that DOM supply exerts a more proximate control on microbial activities. Thus, differing microbial enzymatic capabilities, community structure, and DOM composition—interwoven with salinity and water mass origins—suggest that increased meltwater may alter OM retention and processing in fjords, changing the pool of OM supplied to coastal Arctic microbial communities

    Mapping intertidal macrophytes in fjords in Southwest Greenland using Sentinel-2 imagery

    No full text
    Changes in the distribution of coastal macrophytes in Greenland, and elsewhere in the Arctic are difficult to quantify as the region remains challenging to access and monitor. Satellite imagery, in particular Sentinel-2 (S2), may enable large-scale monitoring of coastal areas in Greenland but its use is impacted by the optically complex environments and the scarcity of supporting data in the region. Additionally, the canopies of the dominant macrophyte species in Greenland do not extend to the sea surface, limiting the use of indices that exploit the reflection of near-infrared radiation by vegetation due to its absorption by seawater. Three hypotheses are tested: I) 10-m S2 imagery and commonly used detection methods can identify intertidal macrophytes that are exposed at low tide in an optically complex fjord system in Greenland impacted by marine and land terminating glaciers; II) detached and floating macrophytes accumulate in patches that are sufficiently large to be detected by 10-m S2 images; III) iceberg scour and/or turbid meltwater runoff shape the spatial distribution of intertidal macroalgae in fjord systems with marine-terminating glaciers. The NDVI produced the best results in optically complex fjord systems in Greenland. 12 km2 of exposed intertidal macrophytes were identified in the study area at low tide. Floating mats of macrophytes ranged in area from 400 m2 to 326,800 m2 and were most common at the mouth of the fjord. Icebergs and turbidity appear to play a role in structuring the distribution of intertidal macrophytes and the retreat of marine terminating glaciers could allow macrophytes cover to expand. The challenges and solutions presented here apply to most fjords in Greenland and, therefore, the methodology may be extended to produce a Greenland-wide estimate of intertidal macrophytes.</p

    Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity

    No full text
    Contains fulltext : 35120.pdf (publisher's version ) (Closed access)Laboratory and field studies have indicated that anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. In this study 11 additional anoxic marine sediment and water column samples were studied to substantiate this claim. In a combined approach using the molecular methods, polymerase chain reaction (PCR), qualitative and quantitative fluorescence in situ hybridization (FISH), as well as (15)N stable isotope activity measurements, it was shown that anammox bacteria were present and active in all samples investigated. The anammox activity measured in the sediment samples ranged from 0.08 fmol cell(-1) day(-1) N(2) in the Golfo Dulce (Pacific Ocean, Costa Rica) sediment to 0.98 fmol cell(-1) day(-1) N(2) in the Gullmarsfjorden (North Sea, Sweden) sediment. The percentage of anammox cell of the total population (stained with DAPI) as assessed by quantitative FISH was highest in the Barents Sea (9% +/- 4%) and in most of the samples well over 2%. Fluorescence in situ hybridization and phylogenetic analysis of the PCR products derived from the marine samples indicated the exclusive presence of members of the Candidatus'Scalindua' genus. This study showed the ubiquitous presence of anammox bacteria in anoxic marine ecosystems, supporting previous observations on the importance of anammox for N cycling in marine environments
    corecore