6 research outputs found

    Validation of ammonia diffusive and pumped samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures

    Get PDF
    We report the determination of ammonia (NH3) diffusive sampling rates for six different designs of commercial diffusive samplers (CEH ALPHA sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler,and ICS Maugeri Radiello radial sampler (blue and white turbulence barriers)), together with the validation test results for a pumped sampler (CEH DELTA denuder). The devices were all exposed in the UK's National Physical Laboratory's (NPL) controlled atmosphere test facility (CATFAC). For each of the seven diffusive sampler exposure tests there were traceable concentrations of ammonia (in the range 3–25 μgm−3) generated under well-defined conditions of temperature, relative humidity and wind speed, which are applicable to a variety of ambient monitoring environments. The sampler exposure time at each concentration was 28 days, except for the radial devices, which were exposed for 14 days. The work relied on the dilution of newly developed stable Primary Standard Gas Mixtures (PSMs) prepared by gravimetry in passivated gas cylinders as a method of improving the metrological traceability of ammonia measurements. The exposed diffusive samplers were sent blind to the participants for analysis and the reported NH3 concentrations were then compared against the known reference concentration. From the results for each sampler type a diffusive sampling rate was calculated and compared against the rate used routinely by the participants. Some measurement results were in good agreement with the known traceable reference concentration (particularly for one diffusive sampler design (ALPHA)), while other devices exhibited over-reading and under-reading (each with a clear bias). The new diffusive sampling rates determined in the laboratory study were then applied to measurements in a field comparison campaign, and this was found to deliver an improvement in agreement between the different devices deployed

    MetNH3 Whim Bog Intercomparison Off-line ammonia metrology intercomparison

    Get PDF
    There is no regular quality assurance programme for ammonia passive samplers despite widespread use of these samplers across Europe and the rest of the world. In order to improve standards and begin to embed quality assurance in the measurement of ambient ammonia using passive samplers, within the EMRP MetNH3 project a passive sampler intercomparison was planned to enable side-by side exposure of the samplers to varying levels of ammonia in the field. From this experiment and in parallel the NPL CATFAC experiment (also within MetNH3), sufficient information and protocols could be developed. The method and infrastructure developed will then be available for future studies

    4D-Var inversion of European NH3 emissions Using CrIS NH3 measurements and GEOS-Chem adjoint with bi-directional and uni-directional flux schemes

    Get PDF
    We conduct the first 4D-Var inversion of NH3 accounting for NH3 bi-directional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close (<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10%–20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NHx wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-down NH3 emissions estimates associated with treatment of NH3 surface exchange

    Current atmospheric nitrogen deposition still exceeds critical loads for sensitive, semi-natural ecosystems in Switzerland

    No full text
    Increased atmospheric nitrogen (N) deposition is driving nutrient imbalances, soil acidification, biodiversity losses and the long-term reduction in stability of sensitive ecosystems which previously had limited N. In this study, we analysed the concentrations of seven different N compounds in precipitation and in the air at 34 sites across Switzerland. We calculated the N deposition by precipitation (bulk deposition) and applied the inferential method to derive dry deposition (gases, aerosols) from air concentrations. We then quantified the total inorganic N deposition by adding together the bulk and dry deposition. Finally, the total inorganic N input into the sensitive ecosystems of the 34 sites was compared to the critical loads of these ecosystems.N deposition by precipitation was the main contributor to the total N load in 16 out of 34 sites, especially into open ecosystems such as alpine/subalpine grassland, mountain hay meadows, and raised bogs. Dry deposition of ammonia (NH3) was the second most important pathway, in particular for forests close to agricultural activities, due to high NH3 concentrations and the higher deposition velocity. The N deposition exceeded the lower limit of the Critical Load of Nitrogen (CLN) range at most sites, and at many sites even surpassed the upper limit of the CLN range. No, or minor, exceedances of the critical loads for N were found only at remote sites at higher elevation in the Central Alps. Annual inorganic N deposition between 2000 and 2017 revealed a significant decline in oxidised N compounds at four of five sites (-1.6-1.8% per year), but reduced compounds only decreased at two sites (-1% and -1.4% per year) and even increased at one site (+1.2% per year), despite adopted abatement strategies for agricultural practices. This emphasises that most sensitive ecosystems in Switzerland continue to be exposed to excessive N loads through atmospheric deposition, with detrimental consequences for the biodiversity and stability of these ecosystems

    4D-Var Inversion of European NH Emissions Using CrIS NH Measurements and GEOS-Chem Adjoint With Bi-Directional and Uni-Directional Flux Schemes.

    No full text
    We conduct the first 4D-Var inversion of NH3 accounting for NH3 bi-directional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close (<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10%-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NH x wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-down NH3 emissions estimates associated with treatment of NH3 surface exchange

    4D-Var Inversion of European NH Emissions Using CrIS NH Measurements and GEOS-Chem Adjoint With Bi-Directional and Uni-Directional Flux Schemes.

    No full text
    We conduct the first 4D-Var inversion of NH3 accounting for NH3 bi-directional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close (<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10%-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NH x wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-down NH3 emissions estimates associated with treatment of NH3 surface exchange
    corecore