65 research outputs found

    Disordered Bose Einstein Condensates with Interaction in One Dimension

    Full text link
    We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random potential with a high density of scatterers. The character of the wave function of the condensate, however, depends in an essential way on the interplay between randomness and the strength of the two-body interaction. For low density of scatterers or strong interactions the wave function extends over the whole interval. High density of scatterers and weak interaction, on the other hand, leads to localization of the wave function in a fragmented subset of the interval

    Microscopic Derivation of the Ginzburg-Landau Model

    Get PDF
    We present a summary of our recent rigorous derivation of the celebrated Ginzburg–Landau (GL) theory, starting from the microscopic Bardeen–Cooper–Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical in nature, and semiclassical analysis, with minimal regularity assumptions, plays an important part in our proof

    Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime

    Get PDF
    While Hartree\u2013Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree\u2013Fock state given by plane waves and introduce collective particle\u2013hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann\u2013Brueckner\u2013type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials

    On the Maximal Excess Charge of the Chandrasekhar-Coulomb Hamiltonian in Two Dimensions

    Full text link
    We show that for the straightforward quantized relativistic Coulomb Hamiltonian of a two-dimensional atom -- or the corresponding magnetic quantum dot -- the maximal number of electrons does not exceed twice the nuclear charge. It result is then generalized to the presence of external magnetic fields and atomic Hamiltonians. This is based on the positivity of |\bx| T(\bp) + T(\bp) |\bx| which -- in two dimensions -- is false for the non-relativistic case T(\bp) = \bp^2, but is proven in this paper for T(\bp) = |\bp|, i.e., the ultra-relativistic kinetic energy

    Critical Temperature and Energy Gap for the BCS Equation

    Full text link
    We derive upper and lower bounds on the critical temperature TcT_c and the energy gap Ξ\Xi (at zero temperature) for the BCS gap equation, describing spin 1/2 fermions interacting via a local two-body interaction potential λV(x)\lambda V(x). At weak coupling λ1\lambda \ll 1 and under appropriate assumptions on V(x)V(x), our bounds show that TcAexp(B/λ)T_c \sim A \exp(-B/\lambda) and ΞCexp(B/λ)\Xi \sim C \exp(-B/\lambda) for some explicit coefficients AA, BB and CC depending on the interaction V(x)V(x) and the chemical potential μ\mu. The ratio A/CA/C turns out to be a universal constant, independent of both V(x)V(x) and μ\mu. Our analysis is valid for any μ\mu; for small μ\mu, or low density, our formulas reduce to well-known expressions involving the scattering length of V(x)V(x).Comment: RevTeX4, 23 pages. Revised version, to appear in Phys. Rev.

    Ground state energy of the low density Hubbard model

    Full text link
    We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani, our result proves that in the low density limit, the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8πaρuρd8\pi a \rho_u \rho_d, where ρu(d)\rho_{u(d)} denotes the density of the spin-up (down) particles, and aa is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.Comment: LaTeX2e, 18 page

    A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

    Full text link
    We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is \Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m positive definite operators A_j. In part I we only considered the case q=1 and proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2. We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also able to include the parameter q\geq 1 and still retain the convexity. Among other things this leads to a definition of an L^q(L^p) norm for operators when 1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces -- which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces earlier draft. 18 pages, late

    Onsager's Inequality, the Landau-Feynman Ansatz and Superfluidity

    Full text link
    We revisit an inequality due to Onsager, which states that the (quantum) liquid structure factor has an upper bound of the form (const.) x |k|, for not too large modulus of the wave vector k. This inequality implies the validity of the Landau criterion in the theory of superfluidity with a definite, nonzero critical velocity. We prove an auxiliary proposition for general Bose systems, together with which we arrive at a rigorous proof of the inequality for one of the very few soluble examples of an interacting Bose fluid, Girardeau's model. The latter proof demonstrates the importance of the thermodynamic limit of the structure factor, which must be taken initially at k different from 0. It also substantiates very well the heuristic density functional arguments, which are also shown to hold exactly in the limit of large wave-lengths. We also briefly discuss which features of the proof may be present in higher dimensions, as well as some open problems related to superfluidity of trapped gases.Comment: 28 pages, 2 figure, uses revtex

    The BCS Functional for General Pair Interactions

    Full text link
    The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed attention as a description of fermionic gases interacting with local pairwise interactions. We present here a rigorous analysis of the BCS functional for general pair interaction potentials. For both zero and positive temperature, we show that the existence of a non-trivial solution of the nonlinear BCS gap equation is equivalent to the existence of a negative eigenvalue of a certain linear operator. From this we conclude the existence of a critical temperature below which the BCS pairing wave function does not vanish identically. For attractive potentials, we prove that the critical temperature is non-zero and exponentially small in the strength of the potential.Comment: Revised Version. To appear in Commun. Math. Phys
    corecore