10 research outputs found

    Meat Intake and the Dose of Vitamin B3 - Nicotinamide:Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

    Get PDF
    Meat and vitamin B 3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B 3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B 3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress

    Molecular modeling and synthesis of ZINC02765569 derivatives as protein tyrosine phosphatase 1B inhibitors: lead optimization study

    No full text
    This article describes design, synthesis, and molecular modeling studies of the ZINC02765569 derivatives as potent protein tyrosine phosphatase 1B (PTP1B) inhibitors, which was previously reported as a vHTS hit (ZINC02765569) by our laboratory. Ten compounds were synthesized and characterized by IR, MASS, and NMR followed by in vitro screening for PTP1B inhibition and glucose uptake in skeletal muscle L6 myotubes. The most potent compound 3j shows 66.4 % in vitro PTP1B inhibition and 39.6 % increase in glucose uptake. Glide was used to study the nature of interactions governing binding of designed molecules with active site of the PTP1B enzyme

    Modern aspects of quantitative theory of free-radical copolymerization

    No full text

    Der Akademismus in der deutschen Musik des 19. Jahrhunderts

    No full text
    corecore