90 research outputs found

    シンキ サイボウ エネルギー タイシャ スクリーニング ニ モトズイタ キュウセイ ジンショウガイ ヨボウヤク チリョウヤク ノ タンサク ト カイハツ

    Get PDF
    Acute kidney injury(AKI)is a big clinical problem. In addition to high mortality rate, AKI is a potent risk factor of end-stage kidney disease. Ischemia reperfusion injury(IRI)is the leading cause of AKI and we have no specific treatment options to treat AKI. Shifting energy metabolism from mitochondrial respiration to glycolysis may offer a novel therapy against ischemic organ injury. Based on this theory, Meclizine, first-generation antihistamine used for motion sickness and vertigo, was identified in a novel chemical screen. Kidney tubular injury after ischemia reperfusion was significantly decreased in meclizine treated mice compared with the vehicle treated mice(100mg/kg of meclizine, 17 hours prior to ischemia). Meclizine treated kidney showed reduced inflammation, oxidative stress and mitochondrial fragmentation after IRI. Meclizine pretreatment reduced mitochondrial oxygen consumption. Reduced cell death and cytochrome c release was found in kidney tubular epithelial cells. Metabolic profiling revealed that Meclizine caused rapid accumulation of cellular phosphoethanolamine(PEtn). PEtn inhibits mitochondrial respiration and is an intermediate in phosphatidylethanolamine biosynthesis pathway(Kennedy pathway). In conclusion, Meclizine, or a derivative, is a candidate drug to minimize AKI risk and Kennedy pathway can be a novel therapeutic target for ischiemic kidney injury

    Clinical evaluation of presepsin considering renal function

    Get PDF
    Presepsin, a glycoprotein produced during bacterial phagocytosis, is used as a sepsis marker for bacterial infections. However, presepsin levels are affected by renal function, and the evaluation criteria according to kidney function or in chronic kidney diseases remain controversial. Furthermore, presepsin may be increased by sample stirring, but no studies have evaluated this effect.In this study, we excluded the effect of stirring by standardizing the blood collection conditions, analyzed the influence of kidney function on presepsin concentrations, and recalculated the reference range based on the findings. EDTA-whole blood from 47 healthy subjects and 85 patients with chronic kidney disease was collected to measure presepsin by PATHFAST. Presepsin was found to be significantly correlated with the levels of creatinine (r = 0.834), eGFRcreat (r = 0.837), cystatin-C (r = 0.845), and eGFRcys (r = 0.879). Furthermore, in patients with CKD, presepsin levels stratified by eGFRcys showed a significant increase in the CKD G2 patient group and with advancing glomerular filtration rate stage. The following values were obtained: Normal: 97.6 ± 27.4 pg/mL, CKD G1: 100.2 ± 27.6 pg/mL, CKD G2: 129.7 ± 40.7 pg/mL, CKD G3: 208.1 ± 70.2 pg/mL, CKD G4: 320.2 ± 170.1 pg/mL, CKD G5: 712.8 ± 336.3 pg/mL. The reference range, calculated by a nonparametric method using 67 cases of healthy volunteers and patients with chronic kidney disease G1, was found to be 59–153 pg/mL, which was notably lower than the standard reference range currently used. Presepsin concentrations were positively correlated with a few biomarkers of renal function, indicating the necessity to consider the effect of renal function in patients with renal impairment. Using the recalculated reference range considering kidney function may improve the accuracy of evaluating presepsin for diagnosis of sepsis compared to the standard reference currently in use

    アーノルド・ファイン作品集

    Get PDF
    Urinary type IV collagen (U-Col4) and albumin excretion is evaluated to monitor the development of diabetic kidney disease. However, U-Col4 excretion in the general population without diabetes has not yet been fully elucidated. In this study, 1067 participants without diabetes and with urinary albumin-creatinine ratio <300 mg/gCr (normo- or microalbuminuria) who underwent an annual health examination in 2004 were enrolled and observed for 5 years. They were divided according to the amount of U-Col4 or urinary albumin excreted. The decline in estimated glomerular filtration rate (eGFR) was calculated. In participants with eGFR ≥80 mL/min, abnormal U-Col4 excretion was indicated as a significant independent risk factor for 10% eGFR change per year, which is one of the prognostic factors for the development of end-stage kidney disease. Moreover, in contrast to urinary albumin excretion, U-Col4 excretion was not related to age or kidney function, suggesting that some individuals with abnormal U-Col4 excretion can have an independent hidden risk for the development of kidney dysfunction. In conclusion, it is important to measure U-Col4 excretion in the general population without diabetes to determine changes in renal features in every individual and help detect future complications such as diabetic kidney disease. If U-Col4 excretion is abnormal, kidney manifestation should be carefully followed up, even if the kidney function and urinalysis findings are normal

    IVC diameter in patients undergoing HD

    Get PDF
    Background : IVC diameter on expiration (IVCdexp) is measured by echocardiography routinely. It is used to estimate volume status and designated as a definitive marker for determining dry weight (DW) in patients undergoing hemodialysis (HD). Methods : A cross-sectional study. Outpatients (n = 107), and inpatients (n = 35) undergoing HD were enrolled. IVCdexp was measured on non-dialysis days in outpatients and dialysis days before and after the dialysis session in inpatients. In outpatients, the relationship of IVCdexp with echocardiography findings and clinical characteristics was analyzed. IVCdexp was compared with the other DW markers as a predictive factor for intradialytic hypotension. In inpatients, IVCdexp was analyzed by dividing inpatients with or without fluid in extravascular space. Results : IVCdexp ranged from 5.4 to 16.9 mm in outpatients who had optimal DW. IVCdexp could reflect on volume status, but not predictive for intradialytic hypotension and not suggestive of fluid in extravascular space. Conclusions : IVCdexp was a rough marker to estimate volume status and only useful in suggesting apparent hypervolemia or hypovolemia. We should know that the IVCdexp value is affected by a lot of factors and not a definitive marker for estimating practical DW

    Successful treatment of highly advanced immunoglobulin G4-related kidney disease presenting renal mass-like regions with end-stage kidney failure : a case study

    Get PDF
    Background: Immunoglobulin G4-related kidney disease characterized by immunoglobulin G4-positive plasma cell-rich tubulointerstitial nephritis has distinctive serological and radiological findings. Renal prognosis is good because of a good response to glucocorticoids. Here we report a case of successful treatment of highly advanced immunoglobulin G4-related kidney disease presenting renal mass-like regions with end-stage kidney failure. Case Presentation: A 59-year-old Japanese man was referred to our hospital because of uremia with a creatinine level of 12.36 mg/dL. Urinalysis revealed mild proteinuria and hyperβ2microglobulinuria, and blood tests showed hyperglobulinemia with an IgG level of 3243 mg/dL and an IgG4 level of 621 mg/dL. Non-contrast computed tomography revealed renal mass-like regions. Based on the findings, immunoglobulin G4-related kidney disease was suspected, however, further radiological examination showed unexpected results. Ga-67 scintigraphy showed no kidney uptake. T2-weighted magnetic resonance imaging revealed high-intensity signals which corresponded to mass-like regions and multiple patchy low-intensity signals in kidney cortex. Finally, the patient was diagnosed with immunoglobulin G4-related kidney disease by renal pathology of severe immunoglobulin G4-positive plasma cellrich tubulointerstitial nephritis and characteristic fibrosis. He received 50 mg oral prednisolone, which was tapered with a subsequent decrease of serum creatinine and IgG4 levels. One year after initiation of treatment, he achieved normalization of serum IgG4 level and proteinuria, and remained off dialysis with a creatinine level of 3.50 mg/dL. After treatment with steroids, repeat imaging suggested bilateral severe focal atrophy. However, mass-like regions did not show atrophic change although renal atrophy was evident in patchy low-intensity lesions on T2-weighted magnetic resonance imaging. These findings suggest that multiple patchy low-intensity signals and high-intensity mass-like regions were mildly atrophic lesions of immunoglobulin G4-related kidney disease due to severe fibrosis and normal parts of kidney, respectively. Conclusions: In immunoglobulin G4-related kidney disease with severe kidney failure, radiological findings should be carefully examined. In addition, renal prognosis may be good despite highly advanced tubulointerstitial nephritis and fibrosis

    Role of Elf3 in diabetic nephropathy

    Get PDF
    Diabetic nephropathy (DN) is among the most serious complications of diabetes mellitus, and often leads to end-stage renal disease ultimately requiring dialysis or renal transplantation. The loss of podocytes has been reported to have a role in the onset and progression of DN. Here, we addressed the activation mechanism of Smad3 signaling in podocytes. Expression of RII and activation of Smad3 were induced by AGE exposure (P<0.05). Reduction of the activation of RII-Smad3 signaling ameliorated podocyte injuries in Smad3-knockout diabetic mice. The bone morphogenetic protein 4 (BMP4) significantly regulated activation of RII-Smad3 signalings (P<0.05). Moreover, the epithelium-specific transcription factor, Elf3was induced by AGE stimulation and, subsequently, upregulated RII expression in cultured podocytes. Induction of Elf3 and activation of RII-Smad3 signaling, leading to a decrease in WT1 expression, were observed in podocytes in diabetic human kidneys. Moreover, AGE treatment induced the secretion of Elf3-containing exosomes from cultured podocytes, which was dependent on the activation of the TGF-β-Smad3 signaling pathway. In addition, exosomal Elf3 protein in urine could be measured only in urinary exosomes from patients with DN. The appearance of urinary exosomal Elf3 protein in patients with DN suggested the existence of irreversible injuries in podocytes. The rate of decline in the estimated Glomerular Filtration Rate (eGFR) after measurement of urinary exosomal Elf3 protein levels in patients with DN (R2 = 0.7259) might be useful as an early non-invasive marker for podocyte injuries in DN

    Urinary type IV collagen excretion in the Japanese general population without diabetes

    Get PDF
    Urinary type IV collagen (U-Col4) and albumin excretion is evaluated to monitor the development of diabetic kidney disease. However, U-Col4 excretion in the general population without diabetes has not yet been fully elucidated. In this study, 1067 participants without diabetes and with urinary albumin-creatinine ratio <300 mg/gCr (normo- or microalbuminuria) who underwent an annual health examination in 2004 were enrolled and observed for 5 years. They were divided according to the amount of U-Col4 or urinary albumin excreted. The decline in estimated glomerular filtration rate (eGFR) was calculated. In participants with eGFR ≥80 mL/min, abnormal U-Col4 excretion was indicated as a significant independent risk factor for 10% eGFR change per year, which is one of the prognostic factors for the development of end-stage kidney disease. Moreover, in contrast to urinary albumin excretion, U-Col4 excretion was not related to age or kidney function, suggesting that some individuals with abnormal U-Col4 excretion can have an independent hidden risk for the development of kidney dysfunction. In conclusion, it is important to measure U-Col4 excretion in the general population without diabetes to determine changes in renal features in every individual and help detect future complications such as diabetic kidney disease. If U-Col4 excretion is abnormal, kidney manifestation should be carefully followed up, even if the kidney function and urinalysis findings are normal

    循環アポリポプロテインL1はインスリン抵抗性が引き起こす脂質代謝異常に関連する

    Get PDF
    Circulating ApolipoproteinL1 (ApoL1) is a component of pre-β-high-density lipoprotein (HDL), however little is known about the relationship of ApoL1 with cardiometabolic factors. Considering previous studies reporting the correlation of ApoL1 to triglyceride, we have hypothesized that ApoL1 associates with insulin-related metabolism. The current study examined their associations in 126 non-diabetic subjects and 36 patients with type 2 diabetes (T2DM). Non-diabetic subjects demonstrated triglyceride (standardized coefficients [s.c.] = 0.204, p < 0.05), body mass index (s.c. =0.232, p < 0.05) and HDL cholesterol (s.c. = −0.203, p < 0.05) as independent determinant of ApoL1 levels, and the significant elevation of ApoL1 in metabolic syndrome. Lipoprotein fractionation analysis revealed the predominant distribution of ApoL1 in large HDL fraction, and the significant increase of ApoL1 in large LDL fraction in high ApoL1 samples with insulin resistance. In T2DM, ApoL1 was higher in T2DM with metabolic syndrome, however ApoL1 was lower with β cell dysfunction. Insulin significantly promotes ApoL1 synthesis and secretion in HepG2 cells. In conclusion, circulating ApoL1 may be associated with abnormal HDL metabolism in insulin resistant status. This may suggest a regulation of insulin signal on the ApoL1 level, leading to offer a novel insight to the ApoL1 biology
    corecore