10 research outputs found

    An Examination of Chimpanzee Use in Human Cancer Research

    Get PDF
    Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases

    Dynamic Effects of Embedded Macro-Fiber Composite Actuators on Ultra-Light Flexible Structures of Repeated Pattern- a Homogenization Approach

    No full text
    Motivated by deployable satellite technology, this article presents a homogenization model of an inflatable, rigidized lattice structure with distributed macro-fiber composite (MFC) actuation. The model is based upon a general expression for the strain and kinetic energy of a fundamental repeated element of the structure. These expressions are reduced in order and expressed in terms of the strain and displacement components of an equivalent one-dimensional vibration model. The resulting model is used to analyze changes in the structural natural frequencies introduced by the local effects of the added macro-fiber composite actuators for several configurations. A finite element solution is used as a comparison for the homogenization model, and the two are shown to be in good agreement, although the latter requires significantly less computational effort

    Subsystem identification of feedback and feedforward systems with time delay

    No full text
    We present an algorithm for identifying discrete-time feedback-and-feedforward subsystems with time delay that are interconnected in closed loop with a known subsystem. This frequency-domain algorithm uses only measured input and output data from a closed-loop discrete-time system, which is single input and single output. No internal signals are assumed to be measured. The orders of the unknown feedback and feedforward transfer functions are assumed to be known. We use a two-candidate-pool multi-convex-optimization approach to identify not only the feedback and feedforward transfer functions but also the feedback and feedforward time delay. The algorithm guarantees asymptotic stability of the identified closed-loop transfer function. The main analytic result shows that if the data noise is sufficiently small and the cardinality of the feedback-candidate-pool set is sufficiently large, then the identified feedforward and feedback delays are equal to the true delays, and the parameters of the identified feedforward and feedback transfer functions are arbitrarily close to the true parameters. This subsystem identification algorithm has application to modeling human-in-the-loop behavior. To demonstrate this application, we apply the new subsystem identification algorithm to data obtained from a human-in-the-loop control experiment in order to model the humans’ feedback and feedforward (with delay) control behavior

    Single Network Adaptive Critic (SNAC) Design for a Morphing Aircraft

    No full text

    A review of morphing aircraft

    No full text
    Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is short for metamorphose: however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title “shape morphing”. Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep and chord), out-of-plane transformation (twist, dihedral/gull, spanwise bending) and airfoil adjustment (camber and thickness).Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity or weight, although in certain circumstances these were overcome by system level benefits. The current trend for highly efficient and “green” aircraft makes such compromises less acceptable, calling for innovative morphing designs able to provide more benefits and fewer drawbacks. Recent developments in “smart” materials may overcome the limitations and enhance the benefits from existing design solutions. The challenge is to design a structure that is capable of withstanding the prescribed loads, but is also able to change its shape: ideally there should be no distinction between the structure and the actuation system. The blending of morphing and smart structures in an integrated approach requires multi-disciplinary thinking from the early development, which significantly increases the overall complexity, even at the preliminary design stage. Morphing is a promising enabling technology for future, next generation aircraft. However, manufacturers and end users are still too skeptical of the benefits to adopt morphing in the near future. Many developed concepts have a technology readiness level that is still very low. The recent explosive growth of satellite services means that UAVs are the technology of choice for many investigations on wing morphing.This paper presents a review of the state of the art on morphing aircraft and focuses on structural, shape changing morphing concepts for both fixed and rotary wings, with particular reference to active systems. Inflatable solutions have been not considered, and skin issues and challenges are not discussed in detail. Although many interesting concepts have been synthesized, few have progressed to wing tunnel testing, and even fewer have flown. Furthermore, any successful wing morphing system must overcome the weight penalty due to the additional actuation systems.<br/

    A Review of Morphing Aircraft

    No full text
    corecore