6,608 research outputs found

    Operational applications of NOAA-VHRR imagery in Alaska

    Get PDF
    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented

    Hydrodynamic lift on bound vesicles

    Full text link
    Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically by combining a lubrication analysis of the bound part with a scaling approach to the global motion. A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical value. Estimates are in agreement with recent experimental data.Comment: 9 pages, one figur

    Effective adhesion strength of specifically bound vesicles

    Full text link
    A theoretical approach has been undertaken in order to model the thermodynamic equilibrium of a vesicle adhering to a flat substrate. The vesicle is treated in a canonical description with a fixed number of sites. A finite number of these sites are occupied by mobile ligands that are capable of interacting with a discrete number of receptors immobilized on the substrate. Explicit consideration of the bending energy of the vesicle shape has shown that the problem of the vesicle shape can be decoupled from the determination of the optimum allocation of ligands over the vesicle. The allocation of bound and free ligands in the vesicle could be determined as a function of the size of the contact zone, the ligand-receptor binding strength and the concentration of the system constituents. Several approximate solutions for different regions of system parameters are determined and in particular, the distinction between receptor-dominated equilibria and ligand-dominated equilibria is found to be important. The crossover between these two types of solutions is found to occur at a critical size of the contact zone. The presented approach enables the calculation of the effective adhesion strength of the vesicle and thus permits meaningful comparisons with relevant experiments as well as connecting the presented model with the proven success of the continuum approach for modeling the shapes of adhering vesicles. The behavior of the effective adhesion strength is analyzed in detail and several approximate expressions for it are given.Comment: 19 pages, 6 figures. To appear in Phys. Rev.

    Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys

    Full text link
    Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80% sodium) are studied using density functional calculations combined with molecular dynamics(Car-Parrinello method). The frequency-dependent electric conductivities for the systems are calculated by means of the Kubo-Greenwood formula. The extrapolated DC conductivities are in good agreement with the experimental data and reproduce the strong variation with the concentration. The maximum of conductivity is obtained, in agreement with experiment, near the equimolar composition. The strong variation of conductivity, ranging from almost semiconducting up to metallic behaviour, can be understood by an analysis of the densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma

    Wrinkling of microcapsules in shear flow

    Full text link
    Elastic capsules can exhibit short wavelength wrinkling in external shear flow. We analyse this instability of the capsule shape and use the length scale separation between the capsule radius and the wrinkling wavelength to derive analytical results both for the threshold value of the shear rate and for the critical wave-length of the wrinkling. These results can be used to deduce elastic parameters from experiments.Comment: 4 pages, 2 figures, submitted to PR

    Modified Fluctuation-dissipation theorem for non-equilibrium steady-states and applications to molecular motors

    Get PDF
    We present a theoretical framework to understand a modified fluctuation-dissipation theorem valid for systems close to non-equilibrium steady-states and obeying markovian dynamics. We discuss the interpretation of this result in terms of trajectory entropy excess. The framework is illustrated on a simple pedagogical example of a molecular motor. We also derive in this context generalized Green-Kubo relations similar to the ones derived recently by Seifert., Phys. Rev. Lett., 104, 138101 (2010) for more general networks of biomolecular states.Comment: 6 pages, 2 figures, submitted in EP

    A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories

    Get PDF
    We present a general method for the analysis of the stability of static, spherically symmetric solutions to spherically symmetric perturbations in an arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves fixing the gauge and solving the linearized gravitational field equations to eliminate the metric perturbation variable in terms of the matter variables. In a wide class of cases--which include f(R) gravity, the Einstein-aether theory of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining perturbation equations for the matter fields are second order in time. We show how the symplectic current arising from the original Lagrangian gives rise to a symmetric bilinear form on the variables of the reduced theory. If this bilinear form is positive definite, it provides an inner product that puts the equations of motion of the reduced theory into a self-adjoint form. A variational principle can then be written down immediately, from which stability can be tested readily. We illustrate our method in the case of Einstein's equation with perfect fluid matter, thereby re-deriving, in a systematic manner, Chandrasekhar's variational principle for radial oscillations of spherically symmetric stars. In a subsequent paper, we will apply our analysis to f(R) gravity, the Einstein-aether theory, and Bekenstein's TeVeS theory.Comment: 13 pages; submitted to Phys. Rev. D. v2: changed formatting, added conclusion, corrected sign convention

    Stability of spherically symmetric solutions in modified theories of gravity

    Full text link
    In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our "generalized variational principle", described in a previous work, to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson & Mattingly's "Einstein-aether theory", and Bekenstein's TeVeS. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the "kinetic terms" of vacuum TeVeS are indefinite in a curved background, leading to an instability.Comment: ReVTex; 20 pages, 3 figures. v2: references added, submitted to PRD; v3: expanded discussion of TeVeS; v4: minor typos corrected (version to appear in PRD
    • …
    corecore