1,464 research outputs found

    Biodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2, 4–dichlorophenoxyacetate

    Full text link
    The efficacy of using genetically engineered microbes (GEMs) to degrade recalcitrant environmental toxicants was demonstrated by the application of Pseudomonas putida PP0301(pR0103) to an Oregon agricultural soil amended with 500 u.g/g of a model xenobiotic, phenoxyacetic acid (PAA). P. putida PP0301(pR0103) is a constitutive degrader of 2, 4–dichlorophenoxyacetate (2, 4–D) and is also active on the non–inducing substrate, PAA. PAA is the parental compound of 2, 4–dichlorophenoxyacetic acid (2, 4–D) and whilst the indigenous soil microbiota degraded 500 ng/g 2, 4–D to less than 10 J–g/g, PAA degradation was insignificant during a 40–day period. No significant degradation of PAA occurred in soil inoculated with the parental strain P. putida PP0301 or the inducible 2, 4–D degrader P. putida PP0301(pR0101). Moreover, co–amendment of soil with 2, 4–D and PAA induced the microbiota to degrade 2, 4–D; PAA was not degraded. P. putida PP0301–(pR0103) mineralized 500–Μg/g PAA to trace levels within 13 days and relieved phytotoxicity of PAA to Raphanus sativus (radish) seeds with 100% germination in the presence of the GEM and 7% germination in its absence. In unamended soil, survival of the plasmid–free parental strain P. putida PP0301 was similar to the survival of the GEM strain P. putida PP0301(pR0103). However, in PAA amended soil, survival of the parent strain was over 10 000–fold lower (< 3 colony forming units per gram of soil) than survival of the GEM strain after 39 days.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75471/1/j.1365-294X.1992.tb00160.x.pd

    Context-Dependent Arm Pointing Adaptation

    Get PDF
    We sought to determine the effectiveness of head posture as a contextual cue to facilitate adaptive transitions in manual control during visuomotor distortions. Subjects performed arm pointing movements by drawing on a digitizing tablet, with targets and movement trajectories displayed in real time on a computer monitor. Adaptation was induced by presenting the trajectories in an altered gain format on the monitor. The subjects were shown visual displays of their movements that corresponded to either 0.5 or 1.5 scaling of the movements made. Subjects were assigned to three groups: the head orientation group tilted the head towards the right shoulder when drawing under a 0.5 gain of display and towards the left shoulder when drawing under a 1.5 gain of display, the target orientation group had the home & target positions rotated counterclockwise when drawing under the 0.5 gain and clockwise for the 1.5 gain, the arm posture group changed the elbow angle of the arm they were not drawing with from full flexion to full extension with 0.5 and 1.5 gain display changes. To determine if contextual cues were associated with display alternations, the gain changes were returned to the standard (1.0) display. Aftereffects were assessed to determine the efficacy of the head orientation contextual cue. . compared to the two control cues. The head orientation cue was effectively associated with the multiple gains. The target orientation cue also demonstrated some effectiveness while the.arm posture cue did not. The results demonstrate that contextual cues can be used to switch between multiple adaptive states. These data provide support for the idea that static head orientation information is a crucial component to the arm adaptation process. These data further define the functional linkage between head posture and arm pointing movements

    Patterns of Transfer of Adaptation Among Body Segments

    Get PDF
    Two experiments were conducted in order to determine the patterns of transfer of visuomotor adaptation between arm and head pointing. An altered gain of display of pointing movements was used to induce a conflict between visual and somatosensory representations. Two subject groups participated in Experiment One: group 1 adapted shoulder pointing movements, and group 2 adapted wrist pointing movements to a 0.5 gain of display. Following the adaptation regimen, subjects performed a transfer test in which the shoulder group performed wrist movements and the wrist group performed shoulder movements. The results demonstrated that both groups displayed typical adaptation curves, initially undershooting the target followed by a return to baseline performance. Transfer tests revealed that both groups had high transfer of the acquired adaptation to the other joint. Experiment Two followed a similar design except that group 1 adapted head pointing movements and group 2 adapted arm pointing movements. The arm adaptation had high transfer to head pointing while the head adaptation had very little transfer to arm pointing. These results imply that, while the arm segments may share a common target representation for goal-directed actions, individual but functionally dependent target representations may exist for the control of head and arm movements

    Performance Benefits Associated with Context-Dependent Arm Pointing Adaptation

    Get PDF
    Our previous work has demonstrated that head orientation can be used as a contextual cue to switch between mUltiple adaptive states. Subjects were assigned to one of three groups: the head orientation group tilted the head towards the right shoulder when drawing under a 0.5 gain of display and towards the left shoulder when drawing under a 1.5 gain of display; the target orientation group had the home & target positions rotated counterclockwise when drawing under the 0.5 gain and clockwise for the l.5 gain; the arm posture group changed the elbow angle of the arm they were not drawing with from full flexion to full extension with 0.5 and l.5 gain display changes. The head orientation cue was effectively associated with the multiple gains, in comparison to the control conditions. The purpose of the current investigation was to determine whether this context-dependent adaptation results in any savings in terms of performance measures such as movement duration and movement smoothness when subjects switch between multiple adaptive states. Subjects in the head adaptation group demonstrated reduced movement duration and increased movement smoothness (measured via normalized j erk scores) in comparison to the two control groups when switching between the 0.5 and 1.5 gain. of display. This work has demonstrated not only that subjects can acquire context-dependent adaptation, but also that it results in a significant savings of performance upon transfer between adaptive state

    How analysts think: sense-making strategies in the analysis of temporal evolution and criminal network structures and activities

    Get PDF
    Analysis of criminal activity based on offenders’ social networks is an established procedure in intelligence analysis. The complexity of the data poses an obstacle for analysts to gauge network developments, e.g. detect emerging problems. Visualization is a powerful tool to achieve this, but it is essential to know how the analysts’ sense-making strategies can be supported most efficiently. Based on a think aloud study we identified ten cognitive strategies on a general level to be useful for designers. We also provide some examples how these strategies can be supported through appropriate visualizations

    The local electronic structure of alpha-Li3N

    Full text link
    New theoretical and experimental investigation of the occupied and unoccupied local electronic density of states (DOS) are reported for alpha-Li3N. Band structure and density functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS finds less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering (NRIXS), RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s- and p-type components of the unoccupied local final density of states projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final density of states due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generically applicable for low atomic number compounds.Comment: 34 pages, 7 figures, 1 tabl

    Electron Quasiparticles Drive the Superconductor-to-Insulator Transition in Homogeneously Disordered Thin Films

    Full text link
    Transport data on Bi, MoGe, and PbBi/Ge homogeneously-disordered thin films demonstrate that the critical resistivity, RcR_c, at the nominal insulator-superconductor transition is linearly proportional to the normal sheet resistance, RNR_N. In addition, the critical magnetic field scales linearly with the superconducting energy gap and is well-approximated by Hc2H_{c2}. Because RNR_N is determined at high temperatures and Hc2H_{c2} is the pair-breaking field, the two immediate consequences are: 1) electron-quasiparticles populate the insulating side of the transition and 2) standard phase-only models are incapable of describing the destruction of the superconducting state. As gapless electronic excitations populate the insulating state, the universality class is no longer the 3D XY model. The lack of a unique critical resistance in homogeneously disordered films can be understood in this context. In light of the recent experiments which observe an intervening metallic state separating the insulator from the superconductor in homogeneously disordered MoGe thin films, we argue that the two transitions that accompany the destruction of superconductivity are 1) superconductor to Bose metal in which phase coherence is lost and 2) Bose metal to localized electron insulator via pair-breaking.Comment: This article is included in the Festschrift for Prof. Michael Pollak on occasion of his 75th birthda
    • …
    corecore