3,697 research outputs found
Spin dependent fragmentation function at Belle
The measurement of the so far unknown chiral-odd quark transverse spin
distribution in either semi-inclusive DIS (SIDIS) or inclusive measurements in
pp collisions at RHIC has an additional chiral-odd fragmentation function
appearing in the cross section. These chiral-odd fragmentation functions (FF)
can for example be the so-called Collins FF or the Interference FF. HERMES has
given a first hint that these FFs are nonzero, however in order to measure the
transversity one needs these FFs to be precisely known. We have used 29.0
fb of data collected by the Belle experiment at the KEKB
collider to measure azimuthal asymmetries for different charge combinations of
pion pairs and thus access the Collins FF.Comment: Results presented at the DIS 2006 conference in Tsukuba, Japa
Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies
To study potential consequences of climate-induced changes in the biotic disturbance regime at regional to national scale we integrated a model of Ips typographus (L. Scol. Col.) damages into the large-scale forest scenario model EFISCEN. A two-stage multivariate statistical meta-model was used to upscale stand level damages by bark beetles as simulated in the hybrid forest patch model PICUS v1.41. Comparing EFISCEN simulations including the new bark beetle disturbance module against a 15-year damage time series for Austria showed good agreement at province level (R² between 0.496 and 0.802). A scenario analysis of climate change impacts on bark beetle-induced damages in Austria¿s Norway spruce [Picea abies (L.) Karst.] forests resulted in a strong increase in damages (from 1.33 Mm³ a¿1, period 1990¿2004, to 4.46 Mm³ a¿1, period 2095¿2099). Studying two adaptive management strategies (species change) revealed a considerable time-lag between the start of adaptation measures and a decrease in simulated damages by bark beetle
Adiabatic connection at negative coupling strengths
The adiabatic connection of density functional theory (DFT) for electronic
systems is generalized here to negative values of the coupling strength
(with {\em attractive} electrons). In the extreme limit
a simple physical solution is presented and its implications
for DFT (as well as its limitations) are discussed. For two-electron systems (a
case in which the present solution can be calculated exactly), we find that an
interpolation between the limit and the opposite limit of
infinitely strong repulsion () yields a rather accurate
estimate of the second-order correlation energy E\cor\glt[\rho] for several
different densities , without using virtual orbitals. The same procedure
is also applied to the Be isoelectronic series, analyzing the effects of
near-degeneracy.Comment: 9 pages, submitted to PR
Modelling understorey dynamics in temperate forests under global change : challenges and perspectives
The understorey harbours a substantial part of vascular plant diversity in temperate forests and plays an important functional role, affecting ecosystem processes such as nutrient cycling and overstorey regeneration. Global change, however, is putting these understorey communities on trajectories of change, potentially altering and reducing their functioning in the future. Developing mitigation strategies to safeguard the diversity and functioning of temperate forests in the future is challenging and requires improved predictive capacity. Process-based models that predict understorey community composition over time, based on first principles of ecology, have the potential to guide mitigation endeavours but such approaches are rare. Here, we review fourteen understorey modelling approaches that have been proposed during the last three decades. We evaluate their inclusion of mechanisms that are required to predict the impact of global change on understorey communities. We conclude that none of the currently existing models fully accounts for all processes that we deem important based on empirical and experimental evidence. Based on this review, we contend new models are needed to project the complex impacts of global change on forest understoreys. Plant functional traits should be central to such future model developments, as they drive community assembly processes and provide valuable information on the functioning of the understorey. Given the important role of the overstorey, a coupling of understorey models to overstorey models will be essential to predict the impact of global change on understorey composition and structure, and how it will affect the functioning of temperate forests in the future
The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0
Climate change and increased fire are eroding the resilience of boreal forests. This is problematic because boreal vegetation and the cold soils underneath store approximately 30 % of all terrestrial carbon. Society urgently needs projections of where, when, and why boreal forests are likely to change. Permafrost (i.e., subsurface material that remains frozen for at least two consecutive years) and the thick soil-surface organic layers (SOLs) that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and SOL module that operates at fine spatial (1 ha) and temporal (daily) resolutions. The module mechanistically simulates daily changes in depth to permafrost, annual SOL accumulation, and their complex effects on boreal forest structure and functions. We coupled the module to an established forest landscape model, iLand, and benchmarked the model in interior Alaska at spatial scales of stands (1 ha) to landscapes (61,000 ha) and over temporal scales of days to centuries. The coupled model could generate intra- and inter-annual patterns of snow accumulation and active layer depth (portion of soil column that thaws throughout the year) consistent with independent observations in 17 instrumented forest stands. The model was also skilled at representing the distribution of near-surface permafrost presence in a topographically complex landscape. We simulated 34.6 % of forested area in the landscape as underlain by permafrost; a close match to the estimated 33.4 % from the benchmarking product. We further determined that the model could accurately simulate moss biomass, SOL accumulation, fire activity, tree-species composition, and stand structure at the landscape scale. Modular and flexible representations of key biophysical processes that underpin 21st-century ecological change are an essential next step in vegetation simulation to reduce uncertainty in future projections and to support innovative environmental decision making. We show that coupling a new permafrost and SOL module to an existing forest landscape model increases the model’s utility for projecting forest futures at high latitudes. Process-based models that represent relevant dynamics will catalyze opportunities to address previously intractable questions about boreal forest resilience, biogeochemical cycling, and feedbacks to regional and global climate. </p
Double transverse spin asymmetry in the Drell-Yan process from Sivers functions
We show that the transverse double spin asymmetry (DSA) in the Drell-Yan
process contributed only from the Sivers functions can be picked out by the
weighting function
.
The asymmetry is proportional to the product of two Sivers functions from each
hadron . Using two sets of Sivers
functions extracted from the semi-inclusive deeply elastic scattering data at
HERMES, we estimate this asymmetry in the
Drell-Yan process which is possible to be performed in HESR at GSI. The
prediction of DSA in the Drell-Yan process contributed by the function
g_{1T}(x,\Vec k_T^2), which can be extracted by the weighting function
,
is also given at GSI.Comment: 6 latex pages, 2 figures, to appear in PR
- …