1,703 research outputs found

    The discount rate: a note on IAS 36

    Get PDF
    Measurement in financial accounting often requires determining an interest rate to discount future cash flows. One example is the International Accounting Standard (IAS)36 Impairment of assets. IAS 36´s impairment test requires determining a value in use (a present value). The Appendix A to the standard gives some guidance on how to determine a suitable discount rate. In this paper, we show that the different approaches included in IAS 36´s guidance are theoretically different. We discuss how the standard should be interpreted and applied based on the theoretical background of financial theory. Only the first alternative, we weighted cost of capital should be used and the other two alternatives should be discarded. In addition, we show that IAS 36´s guidance, applied in practice, may give rise to substential measurement errors. --

    Vom Eignungstest zum benutzergenerierten Assessment. E-Assessment im Lernmanagementsystem OPAL

    Full text link
    Während der letzten Jahre widmete sich das Zentrum für eLearning (Zfe), ein Kompetenzzentrum des Internationalen Hochschulinstitutes (IHI) Zittau und der Fachhochschule Zittau/Görlitz, dem Thema E-Assessment in drei Projekten. Es handelt sich hierbei um die Projekte BegA (Benutzergeneriertes Assessment in OPAL), ETC (Effizienzsteigerung bei der Test- und Contententwicklung) sowie EMiL (Entwicklung von Eignungs- und Qualifikationsmodulen für Masterstudiengänge im Rahmen individualisierter Lehr-und Lernszenarien). In diesem Beitrag werden die Projekte und die dabei gesammelten Erfahrungen vorgestellt. (DIPF/Orig.

    Controls of Land Use and the River Continuum Concept on Dissolved Organic Matter Composition in an Anthropogenically Disturbed Subtropical Watershed

    Get PDF
    About 250 Tg of dissolved organic carbon are annually transported from inland waters to coastal systems making rivers a critical link between terrestrial and ocean carbon pools. During transport through fluvial systems, various biogeochemical processes selectively remove or transform labile material, effectively altering the composition of dissolved organic matter (DOM) exported to the ocean. The river continuum concept (RCC) has been historically used as a model to predict the fate and quality of organic matter along a river continuum. However, the conversion of natural landscapes for urban and agricultural practices can also alter the sources and quality of DOM exported from fluvial systems, and the RCC may be significantly limited in predicting DOM quality in anthropogenically impacted watersheds. Here, we studied DOM dynamics in the Altamaha River watershed in Georgia, USA, a fluvial system where headwater streams are highly impacted by anthropogenic activities. The primary goal of this study was to quantitatively assess the importance of both the RCC and land use as environmental drivers controlling DOM composition. Land use was a stronger predictor of spatial variation (∼50%) in DOM composition defined by both excitation–emission matrix–parallel factor analysis (EEM–PARAFAC) and ultrahigh-resolution mass spectrometry. This is compared to an 8% explained variability that can be attributed to the RCC. This study highlights the importance of incorporating land use among other controls into the RCC to better predict the fate and quality of DOM exported from terrestrial to coastal systems

    Plant Proton Pumps and Cytosolic pH-Homeostasis

    Get PDF
    Proton pumps create a proton motif force and thus, energize secondary active transport at the plasma nmembrane and endomembranes of the secretory pathway. In the plant cell, the dominant proton pumps are the plasma membrane ATPase, the vacuolar pyrophosphatase (V-PPase), and the vacuolar-type ATPase (V-ATPase). All these pumps act on the cytosolic pH by pumping protons into the lumen of compartments or into the apoplast. To maintain the typical pH and thus, the functionality of the cytosol, the activity of the pumps needs to be coordinated and adjusted to the actual needs. The cellular toolbox for a coordinated regulation comprises 14-3-3 proteins, phosphorylation events, ion concentrations, and redox-conditions. This review combines the knowledge on regulation of the different proton pumps and highlights possible coordination mechanisms

    Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells

    Get PDF
    Müller S, Galliardt H, Schneider J, Barisas BG, Seidel T. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Frontiers in Plant Science. 2013;4: 413.Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca(2+)-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy

    Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis

    Get PDF
    Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz K-J. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biology. 2008;9(1): 28.BACKGROUND: The V-ATPase (VHA) is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. RESULTS: The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET). VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP) and yellow fluorescent protein (YFP), respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM) demonstrated that (i.) the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii.) one copy of VHA-c" is present within the VHA-complex, and (iii.) VHA-c" is localised at the ER and associated Golgi bodies. (iv.) A similar localisation was observed for VHA-e2, whereas (v.) the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN)-specifity of this subunit. CONCLUSION: The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport

    The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes

    Get PDF
    Shaikhali J, Heiber I, Seidel T, et al. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biology. 2008;8(1):48
    corecore