1,833 research outputs found

    Topological States on the Gold Surface

    Get PDF
    Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states (SSs). These SSs are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy. We find that these Shockley SSs can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2 topological invariant can be well defined to characterize the nontrivial features of gold that we detect by ARPES. The same TDSSs are also recognized on surfaces of other well-known noble metals (e.g., silver, copper, platinum, and palladium). Besides providing a new understanding of noble metal SSs, finding topological states on late transition metals provokes interesting questions on the role of topological effects in surface-related processes, such as adsorption and catalysis.Comment: 21 pages, 3 figure

    Exploring the Potential of Mobile Laser Scanning to Quantify Forest Structural Complexity

    Get PDF
    Today, creating or maintaining forest structural complexity is a management paradigm in many countries due to the positive relationships between structural complexity and several forest functions and services. In this study, we tested whether the box-dimension (Db), a holistic and objective measure to describe the structural complexity of trees or forests, can be used to quantify the structural complexity of 14 European beech (Fagus sylvatica L.) dominated forest plots by means of mobile laser scanning (MLS). The goal of this study was to explore the potential of this approach for quantifying the effect of leaves (summer vs winter) and management (lately unmanaged vs managed) on forest structural complexity. The findings suggest that repeated measurements on the same site and at the same time yielded consistent results if the measuring scheme is standardized. The results also showed that standardized measurement protocols allowed quantifying differences in forest structural complexity due to season. The highest stand structural complexity was found in leaf-on condition during summer, with the complexity being significantly higher than in winter condition. Also, in case of our beech-dominated plots, managed forests were more complex in structure than formerly managed but now unmanaged forests. This study illustrates the potential of MLS for monitoring the changes in forest structural complexity and allows correcting stand structural information for seasonality

    Advanced Aboveground Spatial Analysis as Proxy for the Competitive Environment Affecting Sapling Development

    Get PDF
    Tree saplings are exposed to a competitive growth environment in which resources are limited and the ability to adapt determines general vitality and specific growth performance. In this study we analyzed the aboveground spatial neighborhood of oak [Quercus petraea (Matt.) Liebl.] and beech (Fagus sylvatica L.) saplings growing in Germany, by using hemispherical photography and terrestrial laser scanning as proxy for the competitive pressure saplings were exposed to. The hemispherical images were used to analyze the light availability and the three-dimensional (3D) point clouds from the laser scanning were used to assess the space and forest structure around the saplings. The aim was to increase the precision with which the biomass allocation, growth, and morphology of the saplings could be predicted by including more detailed information of their environment. The predictive strength of the models was especially increased through direct neighborhood variables (e.g., relative space filling), next to the light availability being the most important predictor variable. The biomass allocation patterns within the more light demanding oak were strongly driven by the space availability around the saplings. Diameter and height growth variables of both species reacted significantly to changes in light availability, and partly also to the neighborhood variables. The leaf morphology [as leaf-area ratio (LAR)] was also driven by light availability and decreased with increasing light availability. However, the branch morphology (as mean branch weight) could not be explained for oak and the model outcome for beech was hard to interpret. The results could show that individuals of the same species perform differently under constant light conditions but differing neighborhoods. Assessing the neighborhood of trees with highly precise measurement devices, like terrestrial laser scanners, proved to be useful. However, the primary response to a dense neighborhood seemed to be coping with a reduction of the lateral light availability aboveground, rather than responding to an increase of competition belowground. The results suggest continuing efforts to increase the precision with which plant environments can be described through innovative and efficient methods, like terrestrial laser scanning

    Insights into the relationship between hydraulic safety, hydraulic efficiency and tree structural complexity from terrestrial laser scanning and fractal analysis

    Get PDF
    The potential of trees to adapt to drier and hotter climates will determine the future state of forests in the wake of a changing climate. Attributes connected to the hydraulic network are likely to determine a tree’s ability to endure drought. However, how a tree’s architectural attributes related to drought tolerance remains understudied. To fill this gap, we compared the structural complexity of 71 trees of 18 species obtained from terrestrial laser scanning (TLS) with key hydraulic thresholds. We used three measures of xylem safety, i.e., the water potential at 12%, 50%, and 88% loss of hydraulic conductance (P12, P50, P88) and specific hydraulic conductivity (Ks) to assess the trees’ drought tolerance. TLS data were used to generate 3D attributes of each tree and to construct quantitative structure models (QSMs) to characterize the branching patterns. Fractal analysis (box-dimension approach) was used to evaluate the overall structural complexity of the trees (Db) by integrating horizontal and vertical extent as well as internal branching patterns. Our findings revealed a significant relationship between the structural complexity (Db) and the three measures of xylem safety along with Ks. Tree species with low structural complexity developed embolism-resistant xylem at the cost of hydraulic efficiency. Our findings also revealed that the Db had a stronger and more significant relationship with branch hydraulic safety and efficiency compared to other structural attributes examined. We conclude that Db seems to be a robust descriptor of tree architecture that relates to important branch hydraulic properties of a tree

    A Quantum Optimization Case Study for a Transport Robot Scheduling Problem

    Full text link
    We present a comprehensive case study comparing the performance of D-Waves' quantum-classical hybrid framework, Fujitsu's quantum-inspired digital annealer, and Gurobi's state-of-the-art classical solver in solving a transport robot scheduling problem. This problem originates from an industrially relevant real-world scenario. We provide three different models for our problem following different design philosophies. In our benchmark, we focus on the solution quality and end-to-end runtime of different model and solver combinations. We find promising results for the digital annealer and some opportunities for the hybrid quantum annealer in direct comparison with Gurobi. Our study provides insights into the workflow for solving an application-oriented optimization problem with different strategies, and can be useful for evaluating the strengths and weaknesses of different approaches

    Habitat openness and predator abundance determine predation risk of warningly colored longhorn beetles (Cerambycidae) in temperate forest

    Get PDF
    Organisms have evolved different defense mechanisms, such as crypsis and mimicry, to avoid detection and recognition by predators. A prominent example is Batesian mimicry, where palatable species mimic unpalatable or toxic ones, such as Clytini (Coleoptera: Cerambycidae) that mimic wasps. However, scientific evidence for the effectiveness of Batesian mimicry in Cerambycids in natural habitats is scarce. We investigated predation of warningly and nonwarningly colored Cerambycids by birds in a temperate forest using beetle dummies. Dummies mimicking Tetropium castaneum, Leptura aethiops, Clytus arietis, and Leptura quadrifasciata were exposed on standing and laying deadwood and monitored predation events by birds over one season. The 20 surveyed plots differed in their structural complexity and canopy openness due to different postdisturbance logging strategies. A total of 88 predation events on warningly colored beetle dummies and 89 predation events on nonwarningly colored beetle dummies did not reveal the difference in predation risk by birds. However, predation risk increased with canopy openness, bird abundance, and exposure time, which peaked in July. This suggests that environmental factors have a higher importance in determining predation risk of warningly and nonwarningly colored Cerambycidae than the actual coloration of the beetles. Our study showed that canopy openness might be important in determining the predation risk of beetles by birds regardless of beetles' warning coloration. Different forest management strategies that often modify canopy openness may thus alter predator-prey interactions

    Three-dimensional quantification of tree architecture from mobile laser scanning and geometry analysis

    Get PDF
    The structure and dynamics of a forest are defined by the architecture and growth patterns of its individual trees. In turn, tree architecture and growth result from the interplay between the genetic building plans and environmental factors. We set out to investigate whether (1) latitudinal adaptations of the crown shape occur due to characteristic solar elevation angles at a species’ origin, (2) architectural differences in trees are related to seed dispersal strategies, and (3) tree architecture relates to tree growth performance. We used mobile laser scanning (MLS) to scan 473 trees and generated three-dimensional data of each tree. Tree architectural complexity was then characterized by fractal analysis using the box-dimension approach along with a topological measure of the top heaviness of a tree. The tree species studied originated from various latitudinal ranges, but were grown in the same environmental settings in the arboretum. We found that trees originating from higher latitudes had significantly less top-heavy geometries than those from lower latitudes. Therefore, to a certain degree, the crown shape of tree species seems to be determined by their original habitat. We also found that tree species with wind-dispersed seeds had a higher structural complexity than those with animal-dispersed seeds (p < 0.001). Furthermore, tree architectural complexity was positively related to the growth performance of the trees (p < 0.001). We conclude that the use of 3D data from MLS in combination with geometrical analysis, including fractal analysis, is a promising tool to investigate tree architecture
    • …
    corecore