59 research outputs found

    A rarefaction-tracking method for hyperbolic conservation laws

    Full text link
    We present a numerical method for scalar conservation laws in one space dimension. The solution is approximated by local similarity solutions. While many commonly used approaches are based on shocks, the presented method uses rarefaction and compression waves. The solution is represented by particles that carry function values and move according to the method of characteristics. Between two neighboring particles, an interpolation is defined by an analytical similarity solution of the conservation law. An interaction of particles represents a collision of characteristics. The resulting shock is resolved by merging particles so that the total area under the function is conserved. The method is variation diminishing, nevertheless, it has no numerical dissipation away from shocks. Although shocks are not explicitly tracked, they can be located accurately. We present numerical examples, and outline specific applications and extensions of the approach.Comment: 21 pages, 7 figures. Similarity 2008 conference proceeding

    Association between Variations in Cell Cycle Genes and Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive lung disease. Its aetiology is thought to involve damage to the epithelium and abnormal repair. Alveolar epithelial cells near areas of remodelling show an increased expression of proapoptotic molecules. Therefore, we investigated the role of genes involved in cell cycle control in IPF. Genotypes for five single nucleotide polymorphisms (SNPs) in the tumour protein 53 (TP53) gene and four SNPs in cyclin-dependent kinase inhibitor 1A (CDKN1A), the gene encoding p21, were determined in 77 IPF patients and 353 controls. In peripheral blood mononuclear cells (PBMC) from 16 healthy controls mRNA expression of TP53 and CDKN1A was determined

    Carbohydrate Metabolism Is Essential for the Colonization of Streptococcus thermophilus in the Digestive Tract of Gnotobiotic Rats

    Get PDF
    Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance

    Expression analysis of asthma candidate genes during human and murine lung development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function.</p> <p>Objective</p> <p>To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma.</p> <p>Methods</p> <p>Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6.</p> <p>Results</p> <p>In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. <it>NOD1, EDN1, CCL5, RORA </it>and <it>HLA-G</it>. Among the asthma genes identified in genome wide association studies, <it>ROBO1</it>, <it>RORA, HLA-DQB1, IL2RB </it>and <it>PDE10A </it>were differentially expressed during human lung development.</p> <p>Conclusions</p> <p>Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.</p

    Forest biodiversity, ecosystem functioning and the provision of ecosystem services

    Get PDF
    Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services

    CD40 in coronary artery disease: a matter of macrophages?

    Get PDF

    Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains

    No full text
    Lindner S, Petrov D, Hagmann C, et al. Phosphotransferase system- (PTS-) mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Applied and Environmental Microbiology. 2013;79(8):2588-2595.Corynebacterium glutamicum is particularly known for its industrial application in the production of amino acids. Amino acid overproduction comes along with a high NADPH demand, which is covered mainly by the oxidative part of the pentose phosphate pathway (PPP). In previous studies, the complete redirection of the carbon flux toward the PPP by chromosomal inactivation of the pgi gene, encoding the phosphoglucoisomerase, has been applied for the improvement of C. glutamicum amino acid production strains, but this was accompanied by severe negative effects on the growth characteristics. To investigate these effects in a genetically defined background, we deleted the pgi gene in the type strain C. glutamicum ATCC 13032. The resulting strain, C. glutamicum Delta pgi, lacked detectable phosphoglucoisomerase activity and grew poorly with glucose as the sole substrate. Apart from the already reported inhibition of the PPP by NADPH accumulation, we detected a drastic reduction of the phosphotransferase system (PTS)-mediated glucose uptake in C. glutamicum Delta pgi. Furthermore, Northern blot analyses revealed that expression of ptsG, which encodes the glucose-specific EII permease of the PTS, was abolished in this mutant. Applying our findings, we optimized L-lysine production in the model strain C. glutamicum DM1729 by deletion of pgi and overexpression of plasmid-encoded ptsG. L-Lysine yields and productivity with C. glutamicum Delta pgi(pBB1-ptsG) were significantly higher than those with C. glutamicum Delta pgi(pBB1). These results show that ptsG overexpression is required to overcome the repressed activity of PTS-mediated glucose uptake in pgi-deficient C. glutamicum strains, thus enabling efficient as well as fast L-lysine production
    • 

    corecore