114 research outputs found

    Evaporation of Fe and FeS dust in the active stage of the primordial solar nebula, and Fe/S fractionation

    Get PDF
    The evaporation kinetics of troilite and metallic iron was applied to evaporation of dust particles moving toward the protosun in the turbulent solar nebula. In the calculations, it was assumed that dust particles do not grow by collision, evaporated gas and residual dust are not separated, and dust particles move only radially along the midplane or the surface of the nebula. It was found that evaporation of metallic iron would occur almost in equilibrium both along the midplane and the surface. Troilite could survive to higher temperature than the equilibrium evaporation temperature due to its evaporation kinetics. However, the kinetic effects are not so large, and the incongruent evaporation of troilite is also regarded to occur roughly in equilibrium. The timescales for evaporation of metallic iron and troilite were compared with the timescales for drifts along r-and z-directions and that for coagulation to understand general aspects of the effect of evaporation kinetics. Since the temperature of the surface is lower than that of the midplane, dust particle at the surface can get closer to the sun than those at the midplane. This can cause Fe/S fractionation in a wide range of the nebula if effective solid-gas separation occurred

    Sublimation Temperature of Circumstellar Dust Particles and Its Importance for Dust Ring Formation

    Get PDF
    Dust particles in orbit around a star drift toward the central star by the Poynting-Robertson effect and pile up by sublimation. We analytically derive the pile-up magnitude, adopting a simple model for optical cross sections. As a result, we find that the sublimation temperature of drifting dust particles plays the most important role in the pile-up rather than their optical property does. Dust particles with high sublimation temperature form a significant dust ring, which could be found in the vicinity of the sun through in-situ spacecraft measurements. While the existence of such a ring in a debris disk could not be identified in the spectral energy distribution (SED), the size of a dust-free zone shapes the SED. Since we analytically obtain the location and temperature of sublimation, these analytical formulae are useful to find such sublimation evidences.Comment: 9 pages, 5 figures, to be published in Earth Planets Spac

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

    Get PDF
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized

    Four‐dimensional‐STEM analysis of the phyllosilicate‐rich matrix of Ryugu samples

    Get PDF
    Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate-rich matrix with four-dimensional scanning transmission electron microscopy (4D-STEM). We have identified and mapped the mineral phases at the nanometer scale (serpentine, smectite, pyrrhotite), observed the presence of Ni-bearing pyrrhotite, and identified the serpentine polymorph as lizardite, in agreement with the reported aqueous alteration history of Ryugu. Furthermore, we have mapped the d-spacings of smectite and observed a broad distribution of values, ranging from 1 to 2 nm, with an average d-spacing of 1.24 nm, indicating significant heterogeneity within the sample. Such d-spacing variability could be the result of either the presence of organic matter trapped in the interlayers or the influence of various geochemical conditions at the submicrometer scale, suggestive of a range of organic compounds and/or changes in smectite crystal chemistry

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss
    corecore