45 research outputs found
Obesity as a risk factor for Alzheimer's disease: the role of adipocytokines
Alzheimer's disease is the leading cause of dementia and the most prevalent neurodegenerative disease. It is an aging-related multi-factorial disorder and growing evidence support the contribution of metabolic factors to what was formerly thought to be a centrally mediated process. Obesity has already been recognized as an important player in the pathogenesis of this type of dementia, independently of insulin resistance or other vascular risk factors. Although the exact underlying mechanisms are still unknown, adipocyte dysfunction and concomitant alteration in adipocyte-derived protein secretion seem to be involved, since these adipocytokines can cross the blood-brain barrier and influence cognitive-related structures. Very few studies have assessed the role of adipocytokines dysfunction on cognitive impaired patients and yielded contradictory results. Interestingly, extensive research on the central effects of leptin in Alzheimer's disease-transgenic mice has demonstrated its capacity to enhance synaptic plasticity and strength, as well as to prevent beta-amyloid deposition and tau phosphorylation. In addition, adiponectin, the most abundant adipocytokine whose levels are inversely correlated to adiposity, has shown to be neuroprotective to hippocampal cells. Many other adipose-derived cytokines have mainly pro-inflammatory properties, being able to trigger and/or enhance central inflammatory cascades and also to influence the secretion of other adipocytokines involved in cognition. This paper pretends to review the existing evidence on the contribution of adipocytokines dysfunction to the increased risk of dementia associated with mid-life obesity, unraveling its insulin-independent effects on cognition.info:eu-repo/semantics/publishedVersio
Decreased Susceptibility of Heart Mitochondria from Diabetic GK Rats to Mitochondrial Permeability Transition Induced by Calcium Phosphate
Type 2 diabetes (or non-insulin dependent diabetes mellitus, NIDDM) is a common metabolic disease in man. The Goto–Kakizaki (GK) rat has been designed as a NIDDM model. Previous studies with this strain have shown differences at the mitochondrial level. The mitochondrial permeability transition (MPT) is a widely studied phenomenon but yet poorly understood, that leads to mitochondrial dysfunction and cell death. The aim of this work was to compare the differences in susceptibility of induction of the MPT with calcium phosphate in GK and Wistar rats. Our results show that heart mitochondria from GK rats are less susceptible to the induction of MPT, and show a larger calcium accumulation before the overall loss of mitochondrial impermeability
Decreased susceptibility to lipid peroxidation of Goto-Kakizaki rats: Relationship to mitochondrial antioxidant capacity
The respiratory function and the antioxidant capacity of liver mitochondrial preparations isolated from Goto-Kakizaki non-insulin dependent diabetic rats and from Wistar control rats, with the age of 6 months, were compared. It was found that Goto-Kakizaki mitochondrial preparations presented a higher coupling between oxidative and phosphorylative systems, compared to non-diabetic preparations. Goto-Kakizaki mitochondria presented a lower susceptibility to lipid peroxidation induced by ADP/Fe2+, as evaluated by the formation of thiobarbituric acid substances. The decreased susceptibility to peroxidation in diabetic rats was correlated with an increase in mitochondrial vitamin E ([alpha]-tocopherol) content and GSH/GSSG ratio. Moreover, the glutathione reductase activity was significantly increased, whereas the glutathione peroxidase was decreased. Superoxide dismutase activity was unchanged in diabetic rats. Fatty acid analyses showed that the content in polyunsaturated fatty acids of Goto-Kakizaki mitochondrial membranes was significantly higher compared to controls. These results indicate that the lower susceptibility to lipid peroxidation of mitochondria from diabetic rats was related to their antioxidant defense systems, and may correspond to an adaptative response of the cells against oxidative stress in the early phase of diabetes.http://www.sciencedirect.com/science/article/B6T99-3X8G9CD-5/1/b5e217dc4a404181393f80ec4d7df98
Comparison of ELISA and HPLC-MS methods for the determination of exenatide in biological and biotechnology-based formulation matrices
The development of biotechnology-based active pharmaceutical ingredients, such as GLP-1 analogs, brought changes in type 2 diabetes treatment options. For better therapeutic efficiency, these active pharmaceutical ingredients require appropriate administration, without the development of adverse effects or toxicity. Therefore, it is required to develop several quantification methods for GLP-1 analogs products, in order to achieve the therapeutic goals, among which ELISA and HPLC arise. These methods are developed, optimized and validated in order to determine GLP-1 analogs, not only in final formulation of the active pharmaceutical ingredient, but also during preclinical and clinical trials assessment. This review highlights the role of ELISA and HPLC methods that have been used during the assessment for GLP-1 analogs, especially for exenatide
ECM-enriched alginate hydrogels for bioartificial pancreas: an ideal niche to improve insulin secretion and diabetic glucose profile
Introduction: The success of a bioartificial pancreas crucially depends on ameliorating encapsulated beta cells survival and function. By mimicking the cellular in vivo niche, the aim of this study was to develop a novel model for beta cells encapsulation capable of establishing an appropriate microenvironment that supports interactions between cells and extracellular matrix (ECM) components. Methods: ECM components (Arg-Gly-Asp, abbreviated as RGD) were chemically incorporated in alginate hydrogels (alginate-RGD). After encapsulation, INS-1E beta cells outcome was analyzed in vitro and after their implantation in an animal model of diabetes. Results: Our alginate-RGD model demonstrated to be a good in vitro niche for supporting beta cells viability, proliferation, and activity, namely by improving the key feature of insulin secretion. RGD peptides promoted cell–matrix interactions, enhanced endogenous ECM components expression, and favored the assembly of individual cells into multicellular spheroids, an essential configuration for proper beta cell functioning. In vivo, our pivotal model for diabetes treatment exhibited an improved glycemic profile of type 2 diabetic rats, where insulin secreted from encapsulated cells was more efficiently used. Conclusions: We were able to successfully introduce a novel valuable function in an old ally in biomedical applications, the alginate. The proposed alginate-RGD model stands out as a promising approach to improve beta cells survival and function, increasing the success of this therapeutic strategy, which might greatly improve the quality of life of an increasing number of diabetic patients worldwide.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by FCT/MEC through National Funds and co-financed by FEDER through the PT2020 Partnership Agreement under the 4293 Unit I&D, FCT Strategic Project PEst-C/SAU/UI3282/2011-2013 and UID/NEU/04539/2013, FCT in the framework of project UID/BIM/04293/2013, FCT in the framework of project IF/00939/2013/CP1179/CT0001, FCT for Joana Crisóstomo (grant number SFRH/BD/72964/2010), FCT for SÃlvia J Bidarra (grant number SFRH/BPD/80571/2011), and FCT and POPH/ESF (EC) for Cristina C Barrias research position FCT Investigator (IF2013)
Brain and liver mitochondria isolated from diabeticGoto-Kakizaki rats show different susceptibility to induced oxidative stress
Increased oxidative stress and changes in antioxidant capacity observed in both clinical and experimental diabetes mellitus have been implicated in the etiology of chronic diabetic complications. Many authors have shown that hyperglycemia leads to an increase in lipid peroxidation in diabetic patients and animals reflecting a rise in reactive oxygen species production. The aim of the study was to compare the susceptibility of mitochondria from brain and liver of Goto-Kakizaki (12-month-old diabetic) rats (GK rats), a model of non-insulin dependent diabetes mellitus, to oxidative stress and antioxidant defenses.Brain and liver mitochondrial preparations were obtained by differential centrifugation. Oxidative damage injury was induced in vitro by the oxidant pair ADP/Fe2+ and the extent of membrane oxidation was assessed by oxygen consumption, malondialdehyde (MDA) and thiobarbituric acid reactive substances (TBARS) formation. Coenzyme Q and alpha-tocopherol contents were measured by high-performance liquid chromatography (HPLC).Brain mitochondria isolated from 12-month-old control rats displayed a higher susceptibility to lipid peroxidation, as assessed by oxygen consumption and formation of MDA and TBARS, compared to liver mitochondria. In GK rats, mitochondria isolated from brain were more susceptible to invitro oxidative damage than brain mitochondria from normal rats. In contrast, liver mitochondria from diabetic rats were less susceptible to oxidative damage than mitochondria from normal rats. This decreased susceptibility was inversely related to their alpha-tocopherol and coenzyme Q (CoQ) content.The present results indicate that the diabetic state can result in an elevation of both alpha-tocopherol and CoQ content in liver, which may be involved in the elimination of mitochondrially generated reactive oxygen species. The difference in the antioxidant defense mechanisms in the brain and liver mitochondrial preparations of moderately hyperglycemic diabetic GK rats may correspond to a different adaptive response of the cells to the increased oxidative damage in diabetes. Copyright © 2001 John Wiley & Sons, Ltd
Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with alpha-naphthyl-isothiocyanate (ANIT)
This study was designed to evaluate the effects of long-term treatment with alpha-naphthyl-isothiocyanate (ANIT) on liver histology and at the mitochondrial bioenergetic level. Since, ANIT has been used as a cholestatic agent and it has been pointed out that an impairment of mitochondrial function is a cause of hepatocyte dysfunction leading to cholestatic liver injury, serum markers of liver injury were measured and liver sections were analyzed in ANIT-treated rats (i.p. 80 mg/kg/week x 16 weeks). Mitochondrial parameters such as transmembrane potential, respiration, calcium capacity, alterations in permeability transition susceptibility and ATPase activity were monitored. Histologically, the most important features were the marked ductular proliferation, proliferation of mast cells and the presence of iron deposits in ANIT-treated liver. Mitochondria isolated from ANIT-treated rats showed no alterations in state 4 respiration, respiratory control ratio and ADP/O ratio, while state 3 respiration was significantly decreased. No changes were observed on transmembrane potential, but the repolarization rate was decreased in treated rats. Consistently with these data, there was a significant decrease in the ATPase activity of treated mitochondria. Associated with these parameters, mitochondria from treated animals exhibited increased susceptibility to mitochondrial permeability transition pore opening (lower calcium capacity). Since, human cholestatic liver disease progress slowly overtime, these data provide further insight into the role of mitochondrial dysfunction in the process
Association between Adipokines and Biomarkers of Alzheimer's Disease: A Cross-Sectional Study
BACKGROUND:
Adipose tissue dysfunction has been implicated in the pathophysiology of Alzheimer's disease. However, the involvement of adipokines, particularly adiponectin, remains unclear.
OBJECTIVE:
To compare serum and cerebrospinal fluid (CSF) levels of adiponectin, leptin and leptin-to-adiponectin ratio in patients within the spectrum of Alzheimer's disease and evaluate their relationship with classical biomarkers and their value as markers of progression.
METHODS:
Amnestic mild cognitive impairment (MCI, n = 71) and Alzheimer's dementia (AD, n = 53) subjects were consecutively recruited for serum and CSF adiponectin and leptin determination using an analytically validated commercial enzyme-linked immunosorbent assay (ELISA). Correlations were explored using adjusted Spearman's correlation coefficients. A logistic regression model and ROC analysis were performed to evaluate the staging predictive value of adipokines.
RESULTS:
Serum adiponectin was 33% higher in AD when compared to MCI patients. Adiponectin CSF levels, similar in both groups, were positively correlated with Aβ42 and cognitive function, though only in women. The area under the ROC curve was 0.673 (95% CI:0.57-0.78) for serum adiponectin as predictor of dementia stage and the cut-off 10.85μg/ml maximized the sum of specificity (87%) and sensitivity (44%).
CONCLUSION:
Although longitudinal studies are required, we hypothesize that higher serum adiponectin in AD patients constitutes a strategy to compensate possible central signaling defects. In addition, adiponectin might be specifically assigned to neuroprotective functions in women and eventually involved in the female-biased incidence of Alzheimer's disease.info:eu-repo/semantics/publishedVersio
Pro-inflammatory triggers in childhood obesity: correlation between leptin, adiponectin and high-sensitivity C-reactive protein in a group of obese Portuguese children
INTRODUCTION:
Pediatric obesity is increasingly prevalent in the Portuguese population. Adipocyte dysfunction results in the expression of pro-inflammatory mediators that are responsible for the low-grade inflammatory process that characterizes obesity.
OBJECTIVES:
The aim of this study was to investigate the relationship between markers of adiposity, inflammation and adipokines in a Portuguese obese pediatric population.
METHODS:
One hundred and twenty children of both sexes, aged 6-17 years, were included in this study. The control group consisted of 41 healthy normal-weight children. The variables analyzed were age, gender, body mass index, waist circumference, fat mass percentage, high-sensitivity C-reactive protein (hs-CRP), leptin and adiponectin.
RESULTS:
There were significant differences between controls and obese children for all parameters analyzed. In the obese group, after controlling for age and gender, hs-CRP (p=0.041), adiponectin (p=0.019) and leptin (p<0.001) still showed significant statistical differences. A direct correlation was found between hs-CRP, leptin, body mass index and waist circumference, the strongest being with leptin (r=0.568; p<0.001). This trend remained statistically significant, regardless of gender or pubertal age.
CONCLUSIONS:
Considering the role of leptin, adiponectin and hs-CRP in the genesis of endothelial dysfunction, they may be used in clinical practice for risk stratification, as well as in the assessment of weight control programs
A role for atorvastatin and insulin combination in protecting from liver injury in a model of type 2 diabetes with hyperlipidemia
Non-alcoholic fatty liver disease (NAFLD) is a major complication linked with the metabolic syndrome associated with dyslipidemia, inflammation, and oxidative stress. Impact of type 2 diabetes with hyperlipidemia in NAFLD has to be established, as well as the utility of commonly prescribed anti-diabetic and lipid-lowering agents in improving liver injury markers. Genetic type 2 diabetic Goto-Kakizaki rats were fed with a high-fat diet to test hepatic effects of type 2 diabetes with hyperlipidemia and the effect of atorvastatin and insulin, individually and in combination, in systemic and hepatic inflammatory and oxidative stress markers. High-fat diet aggravated fasting glycemia, systemic and liver lipids, and inflammatory and oxidative stress markers. Individual treatments improved glycemic and lipid profiles, but failed to improve inflammatory markers, whereas insulin was able to reduce liver oxidative stress parameters. Combination of insulin and atorvastatin further improved glycemic and lipid profiles and decreased circulating C-reactive protein levels and liver inflammatory and oxidative stress markers. Insulin and atorvastatin combination leads to better glycaemic and lipid profiles and to better protection against liver inflammation and oxidative stress, giving a superior level of liver protection in type 2 diabetic with hyperlipidemia