62 research outputs found
Cerebral perfusion MR imaging using FAIR-HASTE in chronic carotid occlusive disease: comparison with dynamic susceptibility contrast-perfusion MR imaging.
To determine the efficacy of flow-sensitive alternating inversion recovery using half-Fourier single-shot turbo spin-echo (FAIR-HASTE) in detecting cerebral hypoperfusion in chronic carotid occlusive disease, we subjected 12 patients with various degrees of cervical internal carotid artery stenoses and/or occlusion (Stenosis group) and 24 volunteers (Normal group) to FAIR-HASTE. In addition, 10 out of 12 patients in the Stenosis group underwent dynamic susceptibility contrast-perfusion magnetic resonance imaging (DSC-pMRI) before and after revascularization in the dominantly affected side. The absolute asymmetry indexes (AIs) of both cerebral hemispheres in the Normal and Stenosis groups were compared in FAIR-HASTE. In addition, the AIs were compared with those in the Stenosis group before and after revascularization in both FAIR-HASTE and regional cerebral blood flow (rCBF), calculated with DSC-pMRI. A statistically significant difference was recognized between the AIs in the Normal and Stenosis groups (AI = 2.25 +- 1.92, 8.09 +- 4.60, respectively ; p < 0.0001). Furthermore, in the Stenosis group the AIs on both FAIR-HASTE (8.88 +- 4.93, 2.22 +- 1.79, respectively ; p = 0.0003) and rCBF (7.13 +- 3.57, 1.25 +- 1.33, respectively ; p = 0.0003) significantly decreased after revascularization. In the Stenosis group, before revascularization, signal intensity on both FAIR-HASTE and rCBF had a tendency to be lower in the dominantly affected side. FAIR-HASTE imaging was useful in the detection and evaluation of cerebral hypoperfusion in chronic occlusive carotid disease
Differential diagnosis of adrenal masses by chemical shift and dynamic gadolinium enhanced MR imaging.
Chemical shift MRI is widely used for identifying adenomas, but it is not a perfect method. We determined whether combined dynamic MRI methods can lead to improved diagnostic accuracy. Fifty-seven adrenal masses were examined by chemical shift and dynamic MR imaging using 2 MR systems. The masses included 38 adenomas and 19 non-adenomas. In chemical shift MRI studies, the signal intensity index (SI) was calculated, and the lesions classified into 5 types in the dynamic MRI studies. Of the 38 adenomas studied, 37 had an SI greater than 0. In the dynamic MRI, 34 of 38 adenomas showed a benign pattern (type 1). If the SI for the adenomas in the chemical shift MRI was considered to be greater than 0, the positive predictive value was 0.9, and the negative predictive value was 0.94 and kappa = 0.79. If type 1 was considered to indicate adenomas in the dynamic MRI, the corresponding values were 0.94, 0.81 and kappa = 0.77 respectively. The results obtained when the 2 methods were combined were 1, 0.95 and kappa = 0.96 respectively. The chemical shift MRI was found to be useful for identifying adenomas in most cases. If the adrenal mass had a low SI (0 < SI < 5), dynamic MRI was also found to be helpful for making a differential diagnosis.</p
Evaluation of Esophageal Varices by Multidetector-row CT: Correlation with Endoscopic ‘Red Color Sign’
<P>To evaluate the ability of multidetector-row CT (MDCT) to predict a risk of hemorrhage in patients with esophageal varices, a total of 40 MDCT scans were performed in 29 patients who had been diagnosed with esophageal varices by conventional upper gastrointestinal tract endoscopy. In 11 patients, MDCT was performed both before and after endoscopic injection sclerotherapy (EIS). Endoscopically, the red color sign (RC sign) was present in 28 scans. Of the 11 patients who underwent EIS, the RC sign disappeared after EIS in 9. The MDCT scans were obtained in the arterial, portal, and equilibrial phases, and the portal phase images were used in this study. Subsequently, the extent of esophageal varices was categorized into four MDCT scores. The variceal score, the maximum short axis of the varices, and the presence of palisade vein dilatation obtained from MDCT had significant correlation with endoscopic variceal forms, and the presence and severity of RC sign, respectively (p<0.01). All cases with a maximum minor axis of more than 4 mm showed positive RC sign. MDCT was useful in the evaluation of esophageal varices for predicting a risk of hemorrhage
Preoperative Graft Volume Assessment with 3D-CT Volumetry in Living-Donor Lobar Lung Transplantations
To determine the effectiveness of living-donor lobar lung transplantation (LDLLT), it is necessary to predict the recipient's postoperative lung function. Traditionally, Date's formula, also called the segmental ratio, has used the number of lung segments to estimate the forced vital capacity (FVC) of grafts in LDLLT. To provide a more precise estimate of graft FVC, we calculated the volumes of the lower lobe and total lung using three-dimensional computed tomography (3D-CT) and the volume ratio between them. We calculated the volume ratio in 52 donors and tested the difference between the segmental volume ratios with a one-tailed t-test. We also calculated the predicted graft FVC in 21 LDLLTs using the segmental ratio pFVC(c) and the volume ratio pFVC(v), and then found the Pearson's correlation coefficients for both pFVC(c) and pFVC(v) with the recipients' actual FVC (rFVC) measured spirometrically 6 months after surgery. Significant differences were found between the segmental ratio and the average volume ratio for both sides (right, p=0.03;left, p=0.0003). Both pFVC(c) and pFVC(v) correlated significantly with rFVC at 6 months after surgery (p=0.007 and 0.006). Both the conventional and the volumetric methods provided FVC predictions that correlated significantly with measured postoperative FVC
Kinematic magnetic resonance imaging (MRI) of the normal shoulder: assessment of the shapes and signals of the superior and inferior labra with abductive movement using an open-type imager.
A preliminary study was conducted to evaluate the superior and inferior glenoid labra with abductive movement using an open-type MR unit in asymptomatic healthy volunteers. Both fast low angle shot (FLASH) and turbo spin echo (TSE) images were obtained to evaluate the shapes of both the superior and inferior labra, as well as to assess changes in signal at these sites. As the abduction angle was increased, the shape of the superior labrum changed from round or triangular to crescentic and a higher signal was frequently seen. At an abduction angle of 150 degrees, an increase in signal was seen in one-half of the superior labra; this increase was noted more frequently in volunteers over 40 years of age. In some of the superior labra, the increase in signal seen at 150 degrees abduction disappeared on subsequent images obtained at 0 degrees abduction. Hence, the increase in signal was considered to be a reversible change. The shape of the inferior labrum tended to change from crescentic to triangular or round. An increase in signal in the inferior labrum was unrelated to the abduction angle. Abductive kinematic studies using an open-type MR unit provides information about the morphology of the superior and inferior labra, as well as information about signal changes occurring at these sites.</p
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.other authors: Satoru Hashimoto,Daisuke Hasegawa,Junji Hatakeyama,Naoki Hara,Naoki Higashibeppu,Nana Furushima,Hirotaka Furusono,Yujiro Matsuishi,Tasuku Matsuyama,Yusuke Minematsu,Ryoichi Miyashita,Yuji Miyatake,Megumi Moriyasu,Toru Yamada,Hiroyuki Yamada,Ryo Yamamoto,Takeshi Yoshida,Yuhei Yoshida,Jumpei Yoshimura,Ryuichi Yotsumoto,Hiroshi Yonekura,Takeshi Wada,Eizo Watanabe,Makoto Aoki,Hideki Asai,Takakuni Abe,Yutaka Igarashi,Naoya Iguchi,Masami Ishikawa,Go Ishimaru,Shutaro Isokawa,Ryuta Itakura,Hisashi Imahase,Haruki Imura,Takashi Irinoda,Kenji Uehara,Noritaka Ushio,Takeshi Umegaki,Yuko Egawa,Yuki Enomoto,Kohei Ota,Yoshifumi Ohchi,Takanori Ohno,Hiroyuki Ohbe,Kazuyuki Oka,Nobunaga Okada,Yohei Okada,Hiromu Okano,Jun Okamoto,Hiroshi Okuda,Takayuki Ogura,Yu Onodera,Yuhta Oyama,Motoshi Kainuma,Eisuke Kako,Masahiro Kashiura,Hiromi Kato,Akihiro Kanaya,Tadashi Kaneko,Keita Kanehata,Ken-ichi Kano,Hiroyuki Kawano,Kazuya Kikutani,Hitoshi Kikuchi,Takahiro Kido,Sho Kimura,Hiroyuki Koami,Daisuke Kobashi,Iwao Saiki,Masahito Sakai,Ayaka Sakamoto,Tetsuya Sato,Yasuhiro Shiga,Manabu Shimoto,Shinya Shimoyama,Tomohisa Shoko,Yoh Sugawara,Atsunori Sugita,Satoshi Suzuki,Yuji Suzuki,Tomohiro Suhara,Kenji Sonota,Shuhei Takauji,Kohei Takashima,Sho Takahashi,Yoko Takahashi,Jun Takeshita,Yuuki Tanaka,Akihito Tampo,Taichiro Tsunoyama,Kenichi Tetsuhara,Kentaro Tokunaga,Yoshihiro Tomioka,Kentaro Tomita,Naoki Tominaga,Mitsunobu Toyosaki,Yukitoshi Toyoda,Hiromichi Naito,Isao Nagata,Tadashi Nagato,Yoshimi Nakamura,Yuki Nakamori,Isao Nahara,Hiromu Naraba,Chihiro Narita,Norihiro Nishioka,Tomoya Nishimura,Kei Nishiyama,Tomohisa Nomura,Taiki Haga,Yoshihiro Hagiwara,Katsuhiko Hashimoto,Takeshi Hatachi,Toshiaki Hamasaki,Takuya Hayashi,Minoru Hayashi,Atsuki Hayamizu,Go Haraguchi,Yohei Hirano,Ryo Fujii,Motoki Fujita,Naoyuki Fujimura,Hiraku Funakoshi,Masahito Horiguchi,Jun Maki,Naohisa Masunaga,Yosuke Matsumura,Takuya Mayumi,Keisuke Minami,Yuya Miyazaki,Kazuyuki Miyamoto,Teppei Murata,Machi Yanai,Takao Yano,Kohei Yamada,Naoki Yamada,Tomonori Yamamoto,Shodai Yoshihiro,Hiroshi Tanaka,Osamu NishidaGuideline
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.other authors: Yasuhiro Norisue, Satoru Hashimoto, Daisuke Hasegawa, Junji Hatakeyama, Naoki Hara, Naoki Higashibeppu, Nana Furushima, Hirotaka Furusono, Yujiro Matsuishi, Tasuku Matsuyama, Yusuke Minematsu, Ryoichi Miyashita, Yuji Miyatake, Megumi Moriyasu, Toru Yamada, Hiroyuki Yamada, Ryo Yamamoto, Takeshi Yoshida, Yuhei Yoshida, Jumpei Yoshimura, Ryuichi Yotsumoto, Hiroshi Yonekura, Takeshi Wada, Eizo Watanabe, Makoto Aoki, Hideki Asai, Takakuni Abe, Yutaka Igarashi, Naoya Iguchi, Masami Ishikawa, Go Ishimaru, Shutaro Isokawa, Ryuta Itakura, Hisashi Imahase, Haruki Imura, Takashi Irinoda, Kenji Uehara, Noritaka Ushio, Takeshi Umegaki, Yuko Egawa, Yuki Enomoto, Kohei Ota, Yoshifumi Ohchi, Takanori Ohno, Hiroyuki Ohbe, Kazuyuki Oka, Nobunaga Okada, Yohei Okada, Hiromu Okano, Jun Okamoto, Hiroshi Okuda, Takayuki Ogura, Yu Onodera, Yuhta Oyama, Motoshi Kainuma, Eisuke Kako, Masahiro Kashiura, Hiromi Kato, Akihiro Kanaya, Tadashi Kaneko, Keita Kanehata, Ken-ichi Kano, Hiroyuki Kawano, Kazuya Kikutani, Hitoshi Kikuchi, Takahiro Kido, Sho Kimura, Hiroyuki Koami, Daisuke Kobashi, Iwao Saiki, Masahito Sakai, Ayaka Sakamoto, Tetsuya Sato, Yasuhiro Shiga, Manabu Shimoto, Shinya Shimoyama, Tomohisa Shoko, Yoh Sugawara, Atsunori Sugita, Satoshi Suzuki, Yuji Suzuki, Tomohiro Suhara, Kenji Sonota, Shuhei Takauji, Kohei Takashima, Sho Takahashi, Yoko Takahashi, Jun Takeshita, Yuuki Tanaka, Akihito Tampo, Taichiro Tsunoyama, Kenichi Tetsuhara, Kentaro Tokunaga, Yoshihiro Tomioka, Kentaro Tomita, Naoki Tominaga, Mitsunobu Toyosaki, Yukitoshi Toyoda, Hiromichi Naito, Isao Nagata, Tadashi Nagato, Yoshimi Nakamura, Yuki Nakamori, Isao Nahara, Hiromu Naraba, Chihiro Narita, Norihiro Nishioka, Tomoya Nishimura, Kei Nishiyama, Tomohisa Nomura, Taiki Haga, Yoshihiro Hagiwara, Katsuhiko Hashimoto, Takeshi Hatachi, Toshiaki Hamasaki, Takuya Hayashi, Minoru Hayashi, Atsuki Hayamizu, Go Haraguchi, Yohei Hirano, Ryo Fujii, Motoki Fujita, Naoyuki Fujimura, Hiraku Funakoshi, Masahito Horiguchi, Jun Maki, Naohisa Masunaga, Yosuke Matsumura, Takuya Mayumi, Keisuke Minami, Yuya Miyazaki, Kazuyuki Miyamoto, Teppei Murata, Machi Yanai, Takao Yano, Kohei Yamada, Naoki Yamada, Tomonori Yamamoto, Shodai Yoshihiro, Hiroshi Tanaka & Osamu Nishid
Delivery of Topically Applied Calpain Inhibitory Peptide to the Posterior Segment of the Rat Eye
<div><p>We developed an inhibitory peptide that specifically acts against mitochondrial μ-calpain (Tat-μCL, 23 amino acid, 2857.37 Da) and protects photoreceptors in retinal dystrophic rats. In the present study, we topically administered Tat-μCL to the eyes of Sprague-Dawley rats for 7 days to determine both the delivery route of the peptide to the posterior segment of the eye and the kinetics after topical application in adult rats. Distribution of the peptide was determined by immunohistochemical analysis, and enzyme-linked immune-absorbent assay was used to quantify the accumulation in the retina. Peptides were prominently detected in both the anterior and posterior segments of the eye at 1 h after the final eye drop application. Immunohistochemically positive reactions were observed in the retina, optic nerve, choroid, sclera and the retrobulbar tissues, even in the posterior portion of the eye. Immunoactivities gradually diminished at 3 and 6 h after the final eye drop. Quantitative estimations of the amount of peptide in the retina were 15.3, 5.8 and 1.0 pg/μg protein at 1, 3 and 6 h after the final instillation, respectively. Current results suggest that while the topically applied Tat-μCL peptide reaches the posterior segment of the retina and the optic nerve, the sufficient concentration (> IC50) is maintained for at least 6 h in the rat retina. Our findings suggest that delivery of topically applied peptide to the posterior segment and optic nerve occurs through the conjunctiva, periocular connective tissue, sclera and optic nerve sheath.</p></div
- …