1,460 research outputs found

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission

    ASCA and BeppoSAX observations of the peculiar X-ray source 4U1700+24/HD154791

    Get PDF
    The X-ray source 4U1700+24/HD154791 is one of the few galactic sources whose counterpart is an evolved M star. In X-rays the source shows extreme erratic variability and a complex and variable spectrum. While this strongly suggests accretion onto a compact object, no clear diagnosis of binarity was done up to now. We report on ASCA and BeppoSAX X-ray broad band observations of this source and on ground optical observations from the Loiano 1.5 m telescope.Comment: 5 pages, 4 figures, uses aipproc.sty, to appear in Proceedings of the Fifth Compton Symposiu

    IBIS/PICsIT in-flight performances

    Full text link
    PICsIT (Pixellated Imaging CaeSium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. PICsIT operates in the gamma-ray energy range between 175 keV and 10 MeV, with a typical energy resolution of 10% at 1 MeV, and an angular resolution of 12 arcmin within a \~100 square degree field of view, with the possibility to locate intense point sources in the MeV region at the few arcmin level. PICsIT is based upon a modular array of 4096 independent CsI(Tl) pixels, ~0.70 cm^2 in cross-section and 3 cm thick. In this work, the PICsIT on-board data handling and science operative modes are described. This work presents the in-flight performances in terms of background count spectra, sensitivity limit, and imaging capabilities.Comment: 8 pages, 4 figures. Accepted for publication on A&A, special issue on First Science with INTEGRA

    Searching for supergiant fast X-ray transients with Swift

    Get PDF
    Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) hosting a neutron star and an OB supergiant companion. We examine the available Swift data, as well as other new or archival/serendipitous data, on three sources: IGR J17407-2808, 2XMM J185114.3-000004, and IGR J18175-2419, whose X-ray characteristics qualify them as candidate SFXT, in order to explore their properties and test whether they are consistent with an SFXT nature. As IGR J17407-2808 and 2XMM J185114.3-000004 triggered the Burst Alert Telescope on board Swift, the Swift data allow us to provide their first arcsecond localisations, leading to an unequivocal identification of the source CXOU J174042.0-280724 as the soft X-ray counterpart of IGR J17407-2808, as well as their first broadband spectra, which can be fit with models generally describing accreting neutron stars in HMXBs. While still lacking optical spectroscopy to assess the spectral type of the companion, we propose 2XMM J185114.3-000004 as a very strong SFXT candidate. The nature of IGR J17407-2808 remains, instead, more uncertain. Its broad band properties cannot exclude that the emission originates from either a HMXB (and in that case, a SFXT) or, more likely, a low mass X-ray binary. Finally, based on the deep non-detection in our XRT monitoring campaign and a careful reanalysis of the original Integral data in which the discovery of the source was first reported, we show that IGR J18175-2419 is likely a spurious detection.Comment: Accepted for publication in Astronomy and Astrophysics. 12 pages, 11 figures, 6 table

    The broad band spectral properties of binary X-ray pulsars

    Get PDF
    The X-ray telescopes on board BeppoSAX are an optimal set of instruments to observe bright galactic binary pulsars. These sources emit very hard and quite complex X-ray spectra that can be accurately measured with BeppoSAX between 0.1 and 200 keV. A prototype of this complexity, the source Her X-1, shows at least seven different components in its spectrum. A broad band measure is therefore of paramount importance to have a thorough insight into the physics of the emitting region. Moreover the detection of cyclotron features, when present, allows a direct and highly significant measure of the magnetic field intensity in the emission region. In this paper we briefly report the results obtained with BeppoSAX on this class of sources, with emphasis on the detection and on the measured properties of the cyclotron lines.Comment: 10 Latex pages, 4 figures, uses psfig.sty. Accepted for publication in Advances in Space Research, in Proceedings of 32nd Scientific Assembly of COSPAR - Symposium E1.1: "Broad-Band X-ray Spectroscopy of Cosmic Sources

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments
    corecore