132 research outputs found

    Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve

    Get PDF
    AIMS: Our aim was to validate patient-specific software integrating baseline anatomy and biomechanical properties of both the aortic root and valve for the prediction of valve morphology and aortic leaflet calcium displacement after TAVI. METHODS AND RESULTS: Finite element computer modelling was performed in 39 patients treated with a Medtronic CoreValve System (MCS; n=33) or an Edwards SAPIEN XT (ESV; n=6). Quantitative axial frame morphology at inflow (MCS, ESV) and nadir, coaptation and commissures (MCS) was compared between multislice computed tomography (MSCT) post TAVI and a computer model as well as displacement of the aortic leaflet calcifications, quantified by the distance between the coronary ostium and the closest calcium nodule. Bland-Altman analysis revealed a strong correlation between the observed (MSCT) and predicted frame dimensions, although small differences were detected for, e.g., Dmin at the inflow (mean±SD MSCT vs. MODEL: 21.6±2.4 mm vs. 22.0±2.4 mm; difference±SD: -0.4±1.3 mm, p<0.05) and Dmax (25.6±2.7 mm vs. 26.2±2.7 mm; difference±SD: -0.6±1.0 mm, p<0.01). The observed and predicted calcium displacements were highly correlated for the left and right coronary ostia (R2=0.67 and R2=0.71, respectively p<0.001). CONCLUSIONS: Dedicated software allows accurate prediction of frame morphology and calcium displacement after valve implantation, which may help to improve outcome

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Arterial pulse wave modelling and analysis for vascular age studies: a review from VascAgeNet

    Get PDF
    Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life

    Absence of cardiovascular manifestations in a haploinsufficient Tgfbr1 mouse model

    Get PDF
    Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor β (TGFβ)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGFβ receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGFβ signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378*nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno)histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS

    2024 Recommendations for Validation of Noninvasive Arterial Pulse Wave Velocity Measurement Devices

    Get PDF
    BACKGROUND: Arterial stiffness, as measured by arterial pulse wave velocity (PWV), is an established biomarker for cardiovascular risk and target-organ damage in individuals with hypertension. With the emergence of new devices for assessing PWV, it has become evident that some of these devices yield results that display significant discrepancies compared with previous devices. This discrepancy underscores the importance of comprehensive validation procedures and the need for international recommendations. METHODS: A stepwise approach utilizing the modified Delphi technique, with the involvement of key scientific societies dedicated to arterial stiffness research worldwide, was adopted to formulate, through a multidisciplinary vision, a shared approach to the validation of noninvasive arterial PWV measurement devices. RESULTS: A set of recommendations has been developed, which aim to provide guidance to clinicians, researchers, and device manufacturers regarding the validation of new PWV measurement devices. The intention behind these recommendations is to ensure that the validation process can be conducted in a rigorous and consistent manner and to promote standardization and harmonization among PWV devices, thereby facilitating their widespread adoption in clinical practice. CONCLUSIONS: It is hoped that these recommendations will encourage both users and developers of PWV measurement devices to critically evaluate and validate their technologies, ultimately leading to improved consistency and comparability of results. This, in turn, will enhance the clinical utility of PWV as a valuable tool for assessing arterial stiffness and informing cardiovascular risk stratification and management in individuals with hypertension

    An animal-specific FSI model of the abdominal aorta in anesthetized mice

    Get PDF
    Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid-structure interaction (FSI) model of the abdominal aorta in ApoE(-/-) mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting
    corecore