1,163 research outputs found

    Use of a right ventricular continuous flow pump to validate the distensible model of the pulmonary vasculature

    Get PDF
    In the pulmonary circulation, resistive and compliant properties overlap in the same vessels. Resistance varies nonlinearly with pressure and flow; this relationship is driven by the elastic properties of the vessels. Linehan et al. (1982) correlated the mean pulmonary arterial pressure and mean flow with resistance using an original equation incorporating the distensibility of the pulmonary arteries. The goal of this study was to validate this equation in an in vivo porcine model. In vivo measurements were acquired in 6 pigs. The distensibility coefficient (DC) was measured by placing piezo-electric crystals around the pulmonary artery (PA). In addition to experiments under pulsatile conditions, a right ventricular (RV) bypass system was used to induce a continuous pulmonary flow state. The Linehan's equation was then used to predict the pressure from the flow under continuous flow conditions. The diameter-derived DC was 2.4 %/mmHg (+/- 0.4 %), whereas the surface area-based DC was 4.1 %/mmHg (+/- 0.1 %). An increase in continuous flow was associated with a constant decrease in resistance, which correlated with the diameter-based DC (r=-0.8407, p=0.044) and the surface area-based DC (r=-0.8986, p=0.028). In contrast to the Linehan's equation, our results showed constant or even decreasing pressure as flow increased. Using a model of continuous pulmonary flow induced by an RV assist system, pulmonary pressure could not be predicted based on the flow using the Linehan's equation. Measurements of distensibility based on the diameter of the PA were inversely correlated with the resistance

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    On the use of mass-conserving wind fields in chemistry-transport models

    Get PDF
    A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity) by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere

    Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve

    Get PDF
    AIMS: Our aim was to validate patient-specific software integrating baseline anatomy and biomechanical properties of both the aortic root and valve for the prediction of valve morphology and aortic leaflet calcium displacement after TAVI. METHODS AND RESULTS: Finite element computer modelling was performed in 39 patients treated with a Medtronic CoreValve System (MCS; n=33) or an Edwards SAPIEN XT (ESV; n=6). Quantitative axial frame morphology at inflow (MCS, ESV) and nadir, coaptation and commissures (MCS) was compared between multislice computed tomography (MSCT) post TAVI and a computer model as well as displacement of the aortic leaflet calcifications, quantified by the distance between the coronary ostium and the closest calcium nodule. Bland-Altman analysis revealed a strong correlation between the observed (MSCT) and predicted frame dimensions, although small differences were detected for, e.g., Dmin at the inflow (mean±SD MSCT vs. MODEL: 21.6±2.4 mm vs. 22.0±2.4 mm; difference±SD: -0.4±1.3 mm, p<0.05) and Dmax (25.6±2.7 mm vs. 26.2±2.7 mm; difference±SD: -0.6±1.0 mm, p<0.01). The observed and predicted calcium displacements were highly correlated for the left and right coronary ostia (R2=0.67 and R2=0.71, respectively p<0.001). CONCLUSIONS: Dedicated software allows accurate prediction of frame morphology and calcium displacement after valve implantation, which may help to improve outcome

    Measuring elastic nonlinearity in a soft solid using a tilted acoustic radiation force for shear wave excitation

    Get PDF
    Excitation of multiple wave modes using shear wave elastography can result in additional information about the tissue's material characteristics and, potentially, improve disease diagnosis. Theoretically, tilting the acoustic radiation force excitation axis with respect to the material's symmetry axis should excite several wave modes in the material. In this work, we have experimentally demonstrated proof of concept in a uniaxially stretched phantom, while increasing the stretch level. Tilted acoustic radiation force experiments showed a clearly visible second wave mode across the stretch direction for larger stretches (>160%)

    How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent

    Get PDF
    Satellite-based aerosol optical depth (AOD) has gained popularity as a powerful data source for calibrating aerosol models and correcting model errors through data assimilation. However, simulated airborne particle mass concentrations are not directly comparable to satellite-based AODs. For this, an AOD operator needs to be developed that can convert the simulated mass concentrations into model AODs. The AOD operator is most sensitive to the input of the particle size and chemical composition of aerosols. Furthermore, assumptions regarding particle size vary significantly amongst model AOD operators. More importantly, satellite retrieval algorithms rely on different size assumptions. Consequently, the differences between the simulations and observations do not always reflect the actual difference in aerosol amount. In this study, the sensitivity of the AOD operator to aerosol properties has been explored. We conclude that, to avoid inconsistencies between the AOD operator and retrieved properties, a common understanding of the particle size is required. Accordingly, we designed a hybrid assimilation methodology (hybrid AOD assimilation) that includes two sequentially conducted procedures. First, aerosol size in the model operator has been brought closer to the assumption of the satellite retrieval algorithm via assimilation of Ångström exponents. This ensures that the model AOD operator is more consistent with the AOD retrieval. The second step in the methodology concerns optimization of aerosol mass concentrations through direct assimilation of AOD (standard AOD assimilation). The hybrid assimilation method is tested over the European domain using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue products. The corrections made to the model aerosol size information are validated through a comparison with the ground-based Aerosol Robotic Network (AERONET) optical product. The increments in surface aerosol mass concentration that occur due to either the standard AOD assimilation analysis or the hybrid AOD assimilation analysis are evaluated against independent ground PM2.5 observations. The standard analysis always results in relatively accurate posterior AOD distributions; however, the corrections are hardly transferred into better aerosol mass concentrations due to the uncertainty in the AOD operator. In contrast, the model AOD and mass concentration states are considerably more accurate when using the hybrid methodology.</p
    corecore