374 research outputs found
Approximate minimum-time trajectories for 2-link flexible manipulators
Powell's nonlinear programming code, VF02AD, was used to generate approximate minimum-time tip trajectories for 2-link semi-rigid and flexible manipulator movements in the horizontal plane. The manipulator is modeled with an efficient finite-element scheme for an n-link, m-joint system with horizontal-plane bending only. Constraints on the trajectory include boundary conditions on position and energy for a rest-to-rest maneuver, straight-line tracking between boundary positions, and motor torque limits. Trajectory comparisons utilize a change in the link stiffness, EI, to transition from the semi-rigid to flexible case. Results show the level of compliance necessary to excite significant modal behavior. Quiescence of the final configuration is examined with the finite-element model
Recommended from our members
Calculation of O-ring failure due to material aging
Applications where O-rings are used to isolate atmospheric environments within a structure are critical to weapon reliability. Failure occurs when gases are able to travel from one side of the O-ring to the other. The anticipated cause of failure is the relaxation of the rubber over decades, the reduction in closure force, and the O-ring`s consequent inability to offer a barrier to gas transport. A predictive model with tractable complexity has been developed to predict the time over which an O-ring is able to maintain an acceptable value of closure force
Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices
We have fabricated electric double-layer field-effect devices to
electrostatically dope our active materials, either =0.015
GaMnAs or =3.2 GaBeAs. The devices
are tailored for interrogation of electric field induced changes to the
frequency dependent conductivity in the accumulation or depletions layers of
the active material via infrared (IR) spectroscopy. The spectra of the
(Ga,Be)As-based device reveal electric field induced changes to the IR
conductivity consistent with an enhancement or reduction of the Drude response
in the accumulation and depletion polarities, respectively. The spectroscopic
features of this device are all indicative of metallic conduction within the
GaAs host valence band (VB). For the (Ga,Mn)As-based device, the spectra show
enhancement of the far-IR itinerant carrier response and broad mid-IR resonance
upon hole accumulation, with a decrease of these features in the depletion
polarity. These later spectral features demonstrate that conduction in
ferromagnetic (FM) GaMnAs is distinct from genuine metallic
behavior due to extended states in the host VB. Furthermore, these data support
the notion that a Mn-induced impurity band plays a vital role in the electron
dynamics of FM GaMnAs. We add, a sum-rule analysis of the spectra
of our devices suggests that the Mn or Be doping does not lead to a substantial
renormalization of the GaAs host VB
Recommended from our members
In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks.
Thermoelectric devices possess enormous potential to reshape the global energy landscape by converting waste heat into electricity, yet their commercial implementation has been limited by their high cost to output power ratio. No single "champion" thermoelectric material exists due to a broad range of material-dependent thermal and electrical property optimization challenges. While the advent of nanostructuring provided a general design paradigm for reducing material thermal conductivities, there exists no analogous strategy for homogeneous, precise doping of materials. Here, we demonstrate a nanoscale interface-engineering approach that harnesses the large chemically accessible surface areas of nanomaterials to yield massive, finely-controlled, and stable changes in the Seebeck coefficient, switching a poor nonconventional p-type thermoelectric material, tellurium, into a robust n-type material exhibiting stable properties over months of testing. These remodeled, n-type nanowires display extremely high power factors (~500â”Wâm-1K-2) that are orders of magnitude higher than their bulk p-type counterparts
Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments
We present NanoImprint lithography experiments and modeling of thin films of
block copolymers (BCP). The NanoImprint lithography is used to align
perpendicularly lamellar phases, over distances much larger than the natural
lamellar periodicity. The modeling relies on self-consistent field calculations
done in two- and three-dimensions. We get a good agreement with the NanoImprint
lithography setups. We find that, at thermodynamical equilibrium, the ordered
BCP lamellae are much better aligned than when the films are deposited on
uniform planar surfaces
Block Copolymer at Nano-Patterned Surfaces
We present numerical calculations of lamellar phases of block copolymers at
patterned surfaces. We model symmetric di-block copolymer films forming
lamellar phases and the effect of geometrical and chemical surface patterning
on the alignment and orientation of lamellar phases. The calculations are done
within self-consistent field theory (SCFT), where the semi-implicit relaxation
scheme is used to solve the diffusion equation. Two specific set-ups, motivated
by recent experiments, are investigated. In the first, the film is placed on
top of a surface imprinted with long chemical stripes. The stripes interact
more favorably with one of the two blocks and induce a perpendicular
orientation in a large range of system parameters. However, the system is found
to be sensitive to its initial conditions, and sometimes gets trapped into a
metastable mixed state composed of domains in parallel and perpendicular
orientations. In a second set-up, we study the film structure and orientation
when it is pressed against a hard grooved mold. The mold surface prefers one of
the two components and this set-up is found to be superior for inducing a
perfect perpendicular lamellar orientation for a wide range of system
parameters
Handbook on dynamics of jointed structures.
The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided
Plasmon-phonon coupling in large-area graphene dot and antidot arrays
Nanostructured graphene on SiO2 substrates pave the way for enhanced
light-matter interactions and explorations of strong plasmon-phonon
hybridization in the mid-infrared regime. Unprecedented large-area graphene
nanodot and antidot optical arrays are fabricated by nanosphere lithography,
with structural control down to the sub-100 nanometer regime. The interaction
between graphene plasmon modes and the substrate phonons is experimentally
demonstrated and structural control is used to map out the hybridization of
plasmons and phonons, showing coupling energies of the order 20 meV. Our
findings are further supported by theoretical calculations and numerical
simulations.Comment: 7 pages including 6 figures. Supporting information is available upon
request to author
- âŠ