3,138 research outputs found

    Adaptation kinetics in bacterial chemotaxis

    Get PDF
    Cells of Escherichia coli, tethered to glass by a single flagellum, were subjected to constant flow of a medium containing the attractant alpha-methyl-DL-aspartate. The concentration of this chemical was varied with a programmable mixing apparatus over a range spanning the dissociation constant of the chemoreceptor at rates comparable to those experienced by cells swimming in spatial gradients. When an exponentially increasing ramp was turned on (a ramp that increases the chemoreceptor occupancy linearly), the rotational bias of the cells (the fraction of time spent spinning counterclockwise) changed rapidly to a higher stable level, which persisted for the duration of the ramp. The change in bias increased with ramp rate, i.e., with the time rate of change of chemoreceptor occupancy. This behavior can be accounted for by a model for adaptation involving proportional control, in which the flagellar motors respond to an error signal proportional to the difference between the current occupancy and the occupancy averaged over the recent past. Distributions of clockwise and counterclockwise rotation intervals were found to be exponential. This result cannot be explained by a response regular model in which transitions between rotational states are generated by threshold crossings of a regular subject to statistical fluctuation; this mechanism generates distributions with far too many long events. However, the data can be fit by a model in which transitions between rotational states are governed by first-order rate constants. The error signal acts as a bias regulator, controlling the values of these constants

    Supporting public availability and accessibility with Elvin: experiences and reflections.

    Get PDF
    We provide a retrospective account of how a generic event notification service called Elvin and a suite of simple client applications: CoffeeBiff, Tickertape and Tickerchat, came to be used within our organisation to support awareness and interaction. After overviewing Elvin and its clients, we outline various experiences from data collated across two studies where Elvin and its clients have been used to augment the workaday world to support interaction, to make digital actions visible, to make physical actions available beyond the location of action, and to support content and socially based information filtering. We suggest there are both functional and technical reasons for why Elvin works for enabling awareness and interaction. Functionally, it provides a way to produce, gather and redistribute information from everyday activities (via Elvin) and to give that information a perceptible form (via the various clients) that can be publicly available and accessible as a resource for awareness. The integration of lightweight chat facilities with these information sources enables awareness to easily flow into interaction, starting to re-connect bodies to actions, and starting to approximate the easy flow of interaction that happens when we are co-located. Technically, the conceptual simplicity of the Elvin notification, the wide availability of its APIs, and the generic functionality of its clients, especially Tickertape, have made the use of the service appealing to developers and users for a wide range of uses

    Coordination of flagella on filamentous cells of Escherichia coli

    Get PDF
    Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range

    Electrodialytic processes in solid matrices. New insights into batteries recycling. A review.

    Get PDF
    Electrodialytic Remediation has been widely applied to the recovery of different contaminants from numerous solid matrices solving emerging issues of environmental concern. Results and conclusions reported in studies about real contaminated matrices are summarizes in this work. The influence of the pH value on the treatment effectiveness has been widely proved highlighting the phenomenon “water splitting” in the membrane surface. This dissociation of water molecules is related to the “limiting current” which is desirable to be exceed at the Anion Exchange Membrane in order to produce the entering of protons toward solid matrix. Other important parameters for the optimization of the technique, such as the current density and the liquid to solid ratio, are also discussed through the revision of studies using real solid matrices. This work also focusses on the pioneer proposal of electrokinetic technologies for the recycling of lithium ion batteries considering the relevance of waste properties in the design and optimization of the technique. From a thorough literature revision, it could be concluded that further experimental results are needed to allow an optimal application of the technique to the rising problem of residues from batteries. The main aim of this work is to take the first steps in the recovery of valuable metals from spent batteries, such as Li and Co, incorporating principles of green chemistry.The authors acknowledge the financial support from the “Plan Propio de Investigación de la Universidad de Málaga with Project numbers: PPIT.UMA.B1.2017/20 and PPIT.UMA.B5.2018/17 and the European project THROUGH H2020-MSCA-RISE- 2017-778045. The first author also acknowledge the postdoctoral contract obtained from University of Malaga

    A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons

    Full text link
    Atomistic simulations were utilized to develop fundamental insights regarding the elongation process starting from ultranarrow graphene nanoribbons (GNRs) and resulting in monatomic carbon chains (MACCs). There are three key findings. First, we demonstrate that complete, elongated, and stable MACCs with fracture strains exceeding 100% can be formed from both ultranarrow armchair and zigzag GNRs. Second, we demonstrate that the deformation processes leading to the MACCs have strong chirality dependence. Specifically, armchair GNRs first form DNA-like chains, then develop into monatomic chains by passing through an intermediate configuration in which monatomic chain sections are separated by two-atom attachments. In contrast, zigzag GNRs form rope-ladder-like chains through a process in which the carbon hexagons are first elongated into rectangles; these rectangles eventually coalesce into monatomic chains through a novel triangle-pentagon deformation structure under further tensile deformation. Finally, we show that the width of GNRs plays an important role in the formation of MACCs, and that the ultranarrow GNRs facilitate the formation of full MACCs. The present work should be of considerable interest due to the experimentally demonstrated feasibility of using narrow GNRs to fabricate novel nanoelectronic components based upon monatomic chains of carbon atoms.Comment: 11 pages, 6 figures, Nanotechnology accepted versio

    A Validated Reversed-Phase HPLC Method for the Determination of Atorvastatin Calcium in Tablets

    Get PDF
    A Reversed-Phase Liquid Chromatographic (RP-LC) assay method was developed for the quantitative determination of atorvastatin calcium in the presence of its degradation products. The assay involved an isocratic elution of atorvastatin calcium in a LiChroCARTR 250*4 mm HPLC Cartridge LiChrospherR 100 RP-18 (5 μm) column using a mobile phase consisting of 0.1% acetic acid solution: acetonitrile (45:55, v/v), pH = 3.8. The flow rate was 0.8 mL/min and the analytes monitored at 246 nm. The assay method was found to be linear from 8.13 to 23.77 μg/mL. All the validation parameters were within the acceptance range. The developed method was successfully applied to estimate the amount of atorvastatin calcium in tablets.Fil: Simionato, Laura Daniela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Ferello, L.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Stamer. S.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Repetto, M. F.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Zubata, P. D.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; ArgentinaFil: Segall, Adriana Ines. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    Raman frequency shift in oxygen functionalized carbon nanotubes

    Full text link
    In terms of lattice dynamics theory, we study the vibrational properties of the oxygen-functionalized single wall carbon nanotubes (O-SWCNs). Due to the C-O and O-O interactions, many degenerate phonon modes are split and even some new phonon modes are obtained, different from the bare SWCNs. A distinct Raman shift is found in both the radial breathing mode and G modes, depending not only on the tube diameter and chirality but also on oxygen coverage and adsorption configurations. With the oxygen coverage increasing, interesting, a nonmonotonic up- and down-shift is observed in G modes, which is contributed to the competition between the bond expansion and contraction, there coexisting in the functionalized carbon nanotube.Comment: 4 pages, 3 figures, 1 tabl

    From sensorimotor dependencies to perceptual practices: making enactivism social

    Get PDF
    Proponents of enactivism should be interested in exploring what notion of action best captures the type of action-perception link that the view proposes, such that it covers all the aspects in which our doings constitute and are constituted by our perceiving. This article proposes and defends the thesis that the notion of sensorimotor dependencies is insufficient to account for the reality of human perception, and that the central enactive notion should be that of perceptual practices. Sensorimotor enactivism is insufficient because it has no traction on socially dependent perceptions, which are essential to the role and significance of perception in our lives. Since the social dimension is a central desideratum in a theory of human perception, enactivism needs a notion that accounts for such an aspect. This article sketches the main features of the Wittgenstein-inspired notion of perceptual practices as the central notion to understand perception. Perception, I claim, is properly understood as woven into a type of social practices that includes food, dance, dress, music, etc. More specifically, perceptual practices are the enactment of culturally structured, normatively rich techniques of commerce of meaningful multi- and inter-modal perceptible material. I argue that perceptual practices explain three central features of socially dependent perception: attentional focus, aspects’ saliency, and modal-specific harmony-like relations
    corecore